
 

 
 
Chadalapaka, et al.      Expires April, 2007      [Page 1] 
 

 

INTERNET DRAFT 
draft-ietf-ips-iwarp-da-04.txt 

Mallikarjun Chadalapaka
                     HP

           John Hufferd
IBM

          Julian Satran
IBM

             Hemal Shah
Intel

 
 
 
 
  Expires April 2007

  

Datamover Architecture for iSCSI (DA) 

 

Status of this Memo 
By submitting this Internet-Draft, each author represents 
that any applicable patent or other IPR claims of which he or 
she is aware have been or will be disclosed, and any of which 
he or she becomes aware will be disclosed, in accordance with 
Section 6 of BCP 79. 

Internet-Drafts are working documents of the Internet 
Engineering Task Force (IETF), its areas, and its working 
groups.  Note that other groups may also distribute working 
documents as Internet-Drafts. 

Internet-Drafts are draft documents valid for a maximum of 
six months and may be updated, replaced, or obsoleted by 
other documents at any time.  It is inappropriate to use 
Internet-Drafts as reference material or to cite them other 
than a "work in progress." 

The list of current Internet-Drafts can be accessed at 
http://www.ietf.org/1id-abstracts.html 

The list of Internet-Draft Shadow Directories can be accessed 
at http://www.ietf.org/shadow.html.  

 

Abstract 
iSCSI is a SCSI transport protocol that maps the SCSI family 
of application protocols onto TCP/IP.  Datamover Architecture 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 2] 
 

for iSCSI (DA) defines an abstract model in which the 
movement of data between iSCSI end nodes is logically 
separated from the rest of the iSCSI protocol in order to 
allow iSCSI to adapt to innovations available in new IP 
transports.  While DA defines the architectural functions 
required of the class of Datamover protocols, it does not 
define any specific Datamover protocols.  Each such Datamover 
protocol, to be defined in a separate document, provides a 
reliable transport for all iSCSI PDUs, but actually moves the 
data required for certain iSCSI PDUs without involving the 
remote iSCSI layer itself.  This document begins with an 
introduction of a few new abstractions, defines a layered 
architecture for iSCSI and Datamover protocols, and then 
models the interactions within an iSCSI end node between the 
iSCSI layer and the Datamover layer that happen in order to 
transparently perform remote data movement within an IP 
fabric.  It is intended that this definition would help map 
iSCSI to generic RDMA-capable IP fabrics in the future 
comprising TCP, SCTP, and possibly other underlying network 
transport layers such as InfiniBand.



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 3] 
 

Table of Contents 

1 Definitions and acronyms ...............................5 
1.1 Definitions ............................................5 
1.2 Acronyms ...............................................5 
2 Motivation .............................................7 
2.1 Intent .................................................7 
2.2 Interpretation of Requirements .........................8 
3 Architectural layering of iSCSI and Datamover layers ...9 
4 Design Overview .......................................11 
5 Architectural Concepts ................................13 
5.1 iSCSI PDU types .......................................13 
5.1.1 iSCSI data-type PDUs.................................13 
5.1.2 iSCSI control-type PDUs..............................14 
5.2 Data_Descriptor .......................................14 
5.3 Connection_Handle .....................................14 
5.4 Operational Primitive .................................15 
5.5 Transport Connection ..................................16 
6 Datamover layer and Datamover protocol ................17 
7 Functional Overview ...................................19 
7.1 Startup ...............................................19 
7.2 Full Feature Phase ....................................19 
7.3 Wrapup ................................................20 
8 Operational Primitives provided by the Datamover layer 22 
8.1 Send_Control ..........................................22 
8.2 Put_Data ..............................................23 
8.3 Get_Data ..............................................24 
8.4 Allocate_Connection_Resources .........................24 
8.5 Deallocate_Connection_Resources .......................25 
8.6 Enable_Datamover ......................................26 
8.7 Connection_Terminate ..................................26 
8.8 Notice_Key_Values .....................................27 
8.9 Deallocate_Task_Resources .............................27 
9 Operational Primitives provided by the iSCSI layer ....29 
9.1 Control_Notify ........................................29 
9.2 Connection_Terminate_Notify ...........................30 
9.3 Data_Completion_Notify ................................30 
9.4 Data_ACK_Notify .......................................31 
10 Datamover Interface (DI) ..............................33 
10.1 Overview.............................................33 
10.2 Interactions for handling asynchronous notifications.33 
10.2.1 Connection termination .............................33 
10.2.2 Data transfer completion ...........................33 
10.2.3 Data acknowledgement ...............................34 
10.3 Interactions for sending an iSCSI PDU................35 
10.3.1 SCSI Command .......................................35 
10.3.2 SCSI Response ......................................36 
10.3.3 Task Management Function Request ...................36 
10.3.4 Task Management Function Response ..................37 
10.3.5 SCSI Data-out & SCSI Data-in .......................37 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 4] 
 

10.3.6 Ready To Transfer (R2T) ............................37 
10.3.7 Asynchronous Message ...............................38 
10.3.8 Text Request .......................................38 
10.3.9 Text Response ......................................38 
10.3.10 Login Request ....................................39 
10.3.11 Login Response ...................................39 
10.3.12 Logout Command ...................................40 
10.3.13 Logout Response ..................................40 
10.3.14 SNACK Request ....................................40 
10.3.15 Reject ...........................................41 
10.3.16 NOP-Out ..........................................41 
10.3.17 NOP-In ...........................................41 
10.4 Interactions for receiving an iSCSI PDU..............41 
10.4.1 General Control-type PDU notification ..............42 
10.4.2 SCSI Data Transfer PDUs ............................42 
10.4.3 Login Request ......................................43 
10.4.4 Login Response .....................................44 
11 Security Considerations ...............................45 
11.1 Architectural Considerations.........................45 
11.2 Wire Protocol Considerations.........................46 
12 IANA Considerations ...................................47 
13 References and Bibliography ...........................48 
13.1 Normative References.................................48 
13.2 Informative References...............................48 
14 Authors' Addresses ....................................49 
15 Acknowledgements ......................................50 
16 Appendix ..............................................54 
16.1 Design considerations for a Datamover protocol.......54 
16.2 Examples of Datamover interactions...................54 
17 Full Copyright Statement ..............................64 
18 Intellectual Property Statement .......................65 
 

Table of Figures 

Figure 1 Datamover Architecture diagram, with the RDMAP 
example......................................................9 
Figure 2 A successful iSCSI login on initiator..............56 
Figure 3 A successful iSCSI login on target.................56 
Figure 4 A failed iSCSI login on initiator..................57 
Figure 5 A failed iSCSI login on target.....................57 
Figure 6 iSCSI does not enable the Datamover................58 
Figure 7 A normal iSCSI connection termination..............59 
Figure 8 An abnormal iSCSI connection termination...........59 
Figure 9 A SCSI Write data transfer.........................60 
Figure 10 A SCSI Read data transfer.........................61 
Figure 11 A SCSI Read data acknowledgement..................62 
Figure 12  Task resource cleanup on abort...................63 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 5] 
 

1 Definitions and acronyms 

1.1 Definitions 

I/O Buffer – A buffer that is used in a SCSI Read or Write 
operation so SCSI data may be sent from or received into 
that buffer. 

Datamover protocol – A Datamover protocol is a data transfer 
wire protocol for iSCSI that meets the requirements 
stated in section 6. 

Datamover layer – A Datamover layer is a protocol layer 
within an end node that implements the Datamover 
protocol. 

Datamover-assisted - An iSCSI connection is said to be 
“Datamover-assisted” when a Datamover layer is enabled 
for moving control and data information on that iSCSI 
connection.  

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and 
"OPTIONAL" in this document are to be interpreted as 
described in [RFC 2119]. 

1.2 Acronyms  

Acronym        Definition 

------------------------------------------------------------- 

DA             Datamover Architecture for iSCSI 

DDP            Direct Data Placement Protocol 

DI             Datamover Interface 

IANA           Internet Assigned Numbers Authority 

IETF           Internet Engineering Task Force 

I/O            Input - Output 

IP             Internet Protocol 

iSCSI          Internet SCSI 

iSER           iSCSI Extensions for RDMA 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 6] 
 

ITT            Initiator Task Tag 

LO             Leading Only 

MPA            Marker PDU Aligned Framing for TCP 

PDU            Protocol Data Unit 

RDDP           Remote Direct Data Placement 

RDMA           Remote Direct Memory Access 

R2T            Ready To Transfer 

R2TSN          Ready To Transfer Sequence Number 

RDMA           Remote Direct Memory Access 

RDMAP          Remote Direct Memory Access Protocol 

RFC            Request For Comments 

SAM            SCSI Architecture Model 

SCSI           Small Computer Systems Interface 

SN             Sequence Number 

SNACK          Selective Negative Acknowledgment - also 

               Sequence Number Acknowledgement for data 

TCP            Transmission Control Protocol 

TTT            Target Transfer Tag 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 7] 
 

2 Motivation 

2.1 Intent 

There are relatively new standard protocols that enable 
Remote Direct Memory Access (RDMA) and Remote Direct Data 
Placement (RDDP) technologies to work over IP fabrics.  The 
principal value proposition of these technologies is that 
they enable one end node to place data in the final intended 
buffer on the remote end node, thus eliminating the data copy 
that traditionally happens in the receive path to move the 
data to the final buffer.  The data copy avoidance in turn 
eliminates unnecessary memory bandwidth consumption, substan-
tially decreases the reassembly buffer size requirements, and 
preserves CPU cycles that would otherwise be spent in 
copying. 

 

The iSCSI specification ([RFC3720]) defines a very detailed 
data transfer model that employs SCSI Data-In PDUs, SCSI 
Data-Out PDUs, and R2T PDUs, in addition to the SCSI Command 
and SCSI Response PDUs that respectively create and conclude 
the task context for the data transfer.  In the traditional 
iSCSI model, the iSCSI protocol layer plays the central role 
in pacing the data transfer and carrying out the ensuing data 
transfer itself.  An alternative architecture would be for 
iSCSI to delegate a large part of this data transfer role to 
a separate protocol layer exclusively designed to move data, 
which in turn is possibly aided by a data movement and 
placement technology such as RDMA.   

  

If iSCSI were operating in such RDMA environments, iSCSI 
would be shielded from the low-level data transfer mechanics 
but would only be privy to the conclusion of the requested 
data transfer  Thus, there would be an effective "off-
loading" of the work that an iSCSI protocol layer is expected 
to perform, compared to today’s iSCSI end nodes.  For such 
RDMA environments, it is highly desirable that there be a 
standard architecture to separate the data movement part of 
the iSCSI protocol definition from the rest of the iSCSI 
functionality.  This architecture precisely defines what a 
Datamover layer is and also describes the model of 
interactions between the iSCSI layer and the Datamover layer 
(section 6). In order to satisfy this need, this document 
presents a Datamover Architecture for iSCSI(DA) and also 
summarizes a reasonable model for interactions between the 
iSCSI layer and the Datamover layer for each of the iSCSI 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 8] 
 

PDUs that are defined in [RFC3720].  Note that while DA is 
motivated by the advent of RDMA over TCP/IP technology, the 
architecture is not dependent on RDMA in its design.  DA is 
intended to be a generic architectural framework for allowing 
different types of Datamovers based on different types of 
RDMA and transport protocols.  Adoption of this model will 
help iSCSI proliferate into more environments.  

 

2.2 Interpretation of Requirements 

This draft introduces certain architectural abstractions and 
builds an abstract functional interface model between iSCSI 
and Datamover protocol layers based on those abstractions.  
This architectural style is motivated by the following 
desires: 

a) Provide guidance to Datamover protocol designers 
with respect to the functional boundary between 
iSCSI and the Datamover protocols.  This guidance is 
critical since a significant part of the [RFC3720] 
protocol definition is left unchanged by DA 
architecture and the iSCSI notions from [RFC3720] 
(e.g., tasks, ITTs) are leveraged by the Datamover 
protocol. 

b) Aid existing iSCSI implementations to rapidly adapt 
to DA architecture, largely by leveraging the 
architectural abstractions also into implementation 
constructs – e.g., functions, APIs, modules.   

 

However, note that DA architecture does not intend to impose 
any implementation specifics per se.  When a DA architectural 
concept (e.g., Operational Primitive) is described as 
mandatory ("MUST") or recommended ("SHOULD") of a layer 
(iSCSI or Datamover) in this document, the intent is that an 
implementation respectively MUST or SHOULD produce the same 
protocol action as what the model describes.  Specifically, 
no implementation compliance in terms of names, modules or 
API arguments etc. is implied by this Architecture by such 
use of [RFC2119] terms, only a functional compliance is 
sought. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 9] 
 

3 Architectural layering of iSCSI and Datamover layers 

Figure 1 illustrates an example of the architectural layering 
of iSCSI and Datamover layers, in conjunction with a TCP/IP 
implementation of RDMAP/DDP layers in an iSCSI end node.  
Note that RDMAP/DDP/MPA, and TCP protocol layers are shown 
here only as an example and in reality, DA is completely 
oblivious to protocol layers below the Datamover layer.  The 
RDMAP/DDP/MPA protocol stack provides a generic transport 
service with direct data placement. There is no need to 
tailor the implementation of this protocol stack to the 
specific ULP to benefit from these services.  

Initiator stack                            Target stack 

 +----------------+     SCSI application   +----------------+ 
 | SCSI Layer     |     protocols          | SCSI Layer     | 
 +----------------+                        +----------------+ 
        ^                                          ^ 
        |                                          | 
        v                                          v 
 +----------------+     iSCSI protocol     +----------------+ 
 | iSCSI Layer    |    (excluding data     | iSCSI Layer    | 
 +----------------+       movement)        +----------------+ 
        ^                                          ^ 
 --  ---+--  ---- DI (Datamover Interface)---  ----+---  ---- 
        v                                          v 
 +----------------+      a Datamover       +----------------+ 
 | Datamover Layer|       protocol         | Datamover Layer| 
 +----------------+                        +----------------+ 
        ^                                          ^ 
+-------+----------+                     +---------+-----------+ 
|       v          |                     |         v           | 
|+---------------+ |                     | +-----------------+ | 
|| RDMAP/DDP/MPA | |    RDMAP/DDP/MPA    | | RDMAP/DDP/MPA   | | 
|| Layers        | |    protocols        | | Layers          | | 
|+---------------+ |                     | +-----------------+ | 
|       ^          |                     |         ^           | 
|       | network  |                     |         | network   | 
|       | transport|                     |         | transport | 
|       v          |                     |         v           | 
|+---------------+ |                     | +----------------+  | 
|| TCP Layer     | |    TCP protocol     | | TCP Layer      |  | 
|+---------------+ |                     | +----------------+  | 
|       ^          |                     |         ^           | 
+-------+----------+                     +---------+-----------+ 
        +------------------------------------------+ 
 

Figure 1 Datamover Architecture diagram, with the 
RDMAP example 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 10] 
 

 

The scope of this document is limited to: 

1. Defining the notion of a Datamover layer and a Datamover 
protocol (section 6),  

2. Defining the functionality distribution between the 
iSCSI layer and the Datamover layer along with the 
communication model between the two (Operational 
Primitives), and, 

3. Modeling the interactions between the blocks labeled as 
"iSCSI Layer" and "Datamover Layer" in Figure 1 – i.e. 
defining the interface labeled as “DI” in the figure - 
for each defined iSCSI PDU, based on the Operational 
Primitives. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 11] 
 

4 Design Overview 

This document discusses and defines a model for interactions 
between the iSCSI layer and a "Datamover layer" (see section 
6) operating within an iSCSI end node, presumably 
communicating with one or more iSCSI end nodes with similar 
layering.  The model for interactions for handling different 
iSCSI operations is called the “Datamover Interface” (DI, 
section 10), while the architecture itself is called 
“Datamover Architecture for iSCSI” (DA).  It is likely that 
the architecture will have implications on the Datamover wire 
protocols as DA places certain requirements and functionality 
expectations on the Datamover layer.  However, this document 
itself neither defines any new wire protocol for the 
Datamover layer, nor any potential modifications to the iSCSI 
wire protocol to employ the Datamover layer.  The scope of 
this document is strictly limited to specifying the 
architectural framework and the minimally required 
interactions that happen within an iSCSI end node to leverage 
the Datamover layer. 

 

The design ideas behind DA can be summarized thus –  

1) DA defines an abstract functional interface model of iSCSI 
layer’s interactions with a Datamover layer below – i.e. DA 
models the interactions between the logical “bottom” 
interface of iSCSI and the logical “top” interface of a 
Datamover. 

2) DA guides the wire protocol for a Datamover layer by 
defining the iSCSI knowledge that the Datamover layer may 
utilize in its protocol definition (as an example, this 
draft completely limits the notion of “iSCSI session” to 
the iSCSI layer). 

3) DA is designed to allow implementing the Datamover layer 
either in hardware or in software. 

4) DA is not a wire protocol spec, but an architecture that 
also models the interactions between iSCSI and Datamover 
layers operating within an iSCSI end node. 

5) DA by design seeks to model the iSCSI-Datamover 
interactions in a way that the modeling is independent of 
the specifics of either a particular iSCSI revision, or a 
specific instantiation of a Datamover layer.  



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 12] 
 

6) DA introduces and relies on the notion of a defined set of 
Operational Primitives (could be seen as entry point 
definitions in implementation terms) provided by each layer 
to the other to carry out the request-response 
interactions.  

7) DA is intended to allow Datamover protocol definitions with 
minimal changes to existing iSCSI implementations. 

8) DA is designed to allow the iSCSI layer to completely rely 
on the Datamover layer for all the data transport needs. 

9) DA models the architecturally required minimal interactions 
between an operational iSCSI layer and a Datamover layer to 
realize the iSCSI-transparent data movement.  There may be 
several other interactions in a typical implementation in 
order to bootstrap a Datamover layer (or an iSCSI layer) 
into operation, and they are outside the scope of this 
document. 

Note that in summary, DA is architected to support many 
different Datamover protocols operating under the iSCSI 
layer.  One such example of a Datamover protocol is iSER 
([iSER]). 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 13] 
 

5 Architectural Concepts 

5.1 iSCSI PDU types 

This section defines the iSCSI PDU classification 
terminology, as defined and used in this document.  Out of 
the set of legal iSCSI PDUs defined in [RFC3720], as we will 
see in section 5.1.1, the iSCSI layer does not request a SCSI 
Data-Out PDU carrying solicited data for transmission across 
the Datamover Interface per this architecture.  For this 
reason, the SCSI Data-Out PDU carrying solicited data is 
excluded in the iSCSI PDU classification we introduce in this 
section (for SCSI Data-Out PDUs for unsolicited Data, see 
section 5.1.2).  The rest of the legal iSCSI PDUs that may be 
exchanged across the Datamover Interface are defined to 
consist of two classes: 

1) iSCSI data-type PDUs 

2) iSCSI control-type PDUs 

 

5.1.1 iSCSI data-type PDUs 

An iSCSI data-type PDU is defined as an iSCSI PDU that causes 
data transfer, transparent to the remote iSCSI layer, to take 
place between the peer iSCSI nodes on a full feature phase 
iSCSI connection.  A data-type PDU, when requested for 
transmission by the sender iSCSI layer, results in the 
associated data transfer without the participation of the 
remote iSCSI layer, i.e. the PDU itself is not delivered as-
is to the remote iSCSI layer.  The following iSCSI PDUs 
constitute the set of iSCSI data-type PDUs – 

1) SCSI Data-In PDU    

2) R2T PDU 

 

In an iSCSI end node structured as an iSCSI layer and a 
Datamover layer as defined in this document, the solicitation 
for Data-out (i.e. R2T PDU) is not delivered to the initiator 
iSCSI layer, per the definition of an iSCSI data-type PDU.  
The data transfer is instead performed via the mechanisms 
known to the Datamover layer (e.g. RDMA Read).  This in turn 
implies that a SCSI Data-Out PDU for solicited data is never 
requested for transmission across the Datamover Interface at 
the initiator. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 14] 
 

 

5.1.2 iSCSI control-type PDUs 

Any iSCSI PDU that is not an iSCSI data-type PDU and also not 
a solicited SCSI Data-out PDU is defined as an iSCSI control-
type PDU.  Specifically, it is to be noted that SCSI Data-Out 
PDUs for unsolicited Data are defined as iSCSI control-type 
PDUs. 

5.2 Data_Descriptor 

A Data_Descriptor is an information element that describes an 
iSCSI/SCSI data buffer, provided by the iSCSI layer to its 
local Datamover layer or by the Datamover layer to its local 
iSCSI layer for identifying the data associated respectively 
with the requested or completed operation.   

 

In implementation terms, a Data_Descriptor may be a scatter-
gather list describing a local buffer, the exact structure of 
which is subject to the constraints imposed by the operating 
environment on the local iSCSI node. 

 

5.3 Connection_Handle 

A Connection_Handle is an information element that identifies 
the particular iSCSI connection for which an inbound or 
outbound iSCSI PDU is intended. A connection handle is unique 
for a given pair of an iSCSI layer instance and a Datamover 
layer instance.  The Connection_Handle qualifier is used in 
all invocations of any Operational Primitive for connection 
identification.  

 

Note that the Connection_Handle is conceptually different 
from the Connection Identifier (CID) defined by the iSCSI 
specification.  While the CID is a unique identifier of an 
iSCSI connection within an iSCSI session, the uniqueness of 
the Connection_Handle extends to the entire iSCSI layer 
instance coupled with the Datamover layer instance, across 
possibly multiple iSCSI sessions. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 15] 
 

In implementation terms, a Connection_Handle could be an 
opaque identifier exchanged between the iSCSI layer and the 
Datamover layer at the connection login time.  One may also 
consider it to be similar in scope of uniqueness to a socket 
identifier.  The exact structure and modalities of exchange 
of a Connection_Handle between the two layers is 
implementation-specific. 

 

5.4 Operational Primitive 

An Operational Primitive, in this document, is an abstract 
functional interface procedure that requests another layer to 
perform a specific action on the requestor’s behalf or 
notifies the other layer of some event. The Datamover 
Interface between an iSCSI layer instance and a Datamover 
layer instance within an iSCSI end node uses a set of 
Operational Primitives to define the functional interface 
between the two layers. Note that not every invocation of an 
Operational Primitive may elicit a response from the 
requested layer.  This document describes the types of 
Operational Primitives that are implicitly required and 
provided by the iSCSI protocol layer as defined in [RFC3720], 
and the semantics of these Primitives. 

 

Note that ownership of buffers and data structures is likely 
to be exchanged between the iSCSI layer and its local 
Datamover layer in invoking the Operational Primitives 
defined in this architecture.  The buffer management details, 
including how buffers are allocated and released, are 
implementation-specific and thus are outside the scope of 
this document.  

 

Each Operational Primitive invocation needs a certain 
“information context” (e.g., Connection_Handle) for 
performing the specific action being requested of it.  The 
required information context is described in this document by 
a listing of “qualifiers” on each invocation - in the style 
of function call arguments.  No implementation specific is 
however implied in this notation.  The “qualifiers" of any 
Operational Primitive invocation specified in this document 
thus represent the mandatory information context that the 
Operational Primitive invocation MUST consider in performing 
the action.  While the qualifiers are required, the method of 
realizing the qualifiers (passed synchronously with 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 16] 
 

invocation, or retrieved from task context, or retrieved from 
shared memory etc.) is really up to the implementations. 

 

When an Operational Primitive implementation is described as 
mandatory ("MUST") or recommended ("SHOULD") of a layer 
(iSCSI or Datamover) in this document, the intent is that an 
implementation respectively MUST or SHOULD produce the same 
protocol action as what the model describes. 

 

5.5 Transport Connection 

The term “Transport Connection” is used in this document as a 
generic term to represent the end-to-end logical connection 
as defined by the underlying reliable transport protocol.  
For this revision of this document, a Transport Connection 
means only a TCP connection. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 17] 
 

6 Datamover layer and Datamover protocol 

This section introduces the notion of a "Datamover layer" and 
“Datamover protocol” as meant in this document, and defines 
the requirements on a Datamover protocol. 

 

A Datamover layer is the implementation component that 
realizes a Datamover protocol functionality in an iSCSI-
capable end node, in communicating with other iSCSI end nodes 
with similar capabilities.  More specifically, a “Datamover 
layer” MUST provide the following functionality and the 
“Datamover protocol” MUST consist of the wire protocol 
required to realize the following functionality – 

1) guarantee that all the necessary data transfers take place 
when the local iSCSI layer requests transmitting a command 
(in order to complete a SCSI command, for an initiator),or 
sending/receiving an iSCSI data sequence (in order to 
complete part of a SCSI command, for a target). 

2) transport an iSCSI control-type PDU as-is to the peer 
Datamover layer when requested to do so by the local iSCSI 
layer. 

3) provide notification and delivery to the iSCSI layer upon 
arrival of an iSCSI control-type PDU. 

4) provide an initiator-to-target data acknowledgement of SCSI 
read data back to the target iSCSI layer, when requested. 

5) provide an asynchronous notification upon completion of a 
requested data transfer operation that moved data without 
involving the iSCSI layer. 

6) place the SCSI data into the I/O buffers or pick up the 
SCSI data for transmission out of the data buffers that the 
iSCSI layer had requested to be used for a SCSI I/O. 

7) provide an error-free (i.e. must have at least the same 
level of assurance of data integrity as the CRC32C iSCSI 
data digest), reliable, in-order delivery transport 
mechanism over IP networks in performing the data transfer, 
and asynchronously notify the iSCSI layer upon iSCSI 
connection termination. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 18] 
 

Note that this architecture expects that each compliant 
Datamover protocol will define the precise means of 
satisfying the requirements specified in this section. 

 

In order to meet the functional requirements listed in this 
section, certain Datamover protocols may require pre-posted 
buffers from the local iSCSI protocol layer via mechanisms 
outside the scope of this document and in some 
implementations, the absence of such buffers may result in a 
connection failure.  Datamover protocols may also realize 
these functional requirements via methods not explicitly 
listed in this document. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 19] 
 

7 Functional Overview 

This section presents an overview of the functional 
interactions between the iSCSI layer and the Datamover layer 
as intended by this Architecture. 

 

7.1 Startup 

The iSCSI Login Phase on an iSCSI connection occurs as 
defined in [RFC3720].  The Architecture assumes that at the 
end of the Login Phase, both the initiator and target, if 
they had so decided, transition the connection to being 
Datamover-assisted.  The precise means of how an iSCSI 
initiator and an iSCSI target agree on having the connection 
Datamover-assisted is defined by the Datamover protocol.  The 
only architectural requirement is that all iSCSI interactions 
in the iSCSI Full Feature Phase MUST be Datamover-assisted 
subject to the prior agreement, meaning that Datamover 
protocol is in the iSCSI-to-iSCSI communication path below 
the iSCSI layer on either side as shown in Figure 1.  DA 
defines the Enable_Datamover Operational Primitive (section 
8.6) to bring about this transition to a Datamover-assisted 
connection. 

 

The Architecture also assumes that the Datamover layer may 
require a certain number of opaque local resources for making 
a connection Datamover-assisted.  DA thus defines the 
Allocate_Connection_Resources Operational Primitive (section 
8.4) to model this interaction.  This Primitive is intended 
to be invoked on each side once the two sides decide (as 
previously noted) to have the connection Datamover-assisted.  
The expected sequence of Primitive invocations is depicted in 
Figure 2 and Figure 3 in section 16.2.  Figure 4, Figure 5, 
and Figure 6 illustrate how the Primitives may be employed to 
deal with various legal login outcomes. 

 

7.2 Full Feature Phase 

All iSCSI peer communication in the Full Feature Phase 
happens through the Datamover layers if the iSCSI connection 
is Datamover-assisted.  The Architecture assumes that a 
Datamover layer may require a certain number of opaque local 
resources for each new iSCSI task.  In the normal course of 
execution, these task-level resources in the Datamover layer 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 20] 
 

are assumed to be transparently allocated on each task 
initiation and deallocated on the conclusion of each task as 
appropriate.  In exception scenarios however – in scenarios 
that do not yield a SCSI Response for each task such as ABORT 
TASK operation – the Architecture assumes that the Datamover 
layer needs to be notified of the individual task 
terminations to aid its task-level resource management.  DA 
thus defines the Deallocate_Task_Resources Operational 
Primitive (section 8.9) to model this task-resource 
management.  In specifying the ITT qualifier for the 
Deallocate_Task_Resources Primitive, the Architecture further 
assumes that the Datamover layer tracks its opaque task-level 
local resources by the iSCSI ITT.  DA also defines 
Send_Control (section 8.1), Put_Data (section 8.2), Get_Data 
(section 8.3), Data_Completion_Notify(section 9.3), 
Data_ACK_Notify (section 9.4), and Control_Notify (section 
9.1) Operational Primitives to model the various Full Feature 
Phase interactions. 

 

Figure 9, Figure 10, and Figure 11 in section 16.2 show some 
Full Feature Phase interactions – SCSI Write task, SCSI Read 
task, and a SCSI Read Data acknowledgement respectively.  
Figure 12 in section 16.2 illustrates how an ABORT TASK 
operation can be modeled leading to deterministic resource 
cleanup on the Datamover layer. 

 

7.3 Wrapup 

Once an iSCSI connection becomes Datamover-assisted, the 
connection continues in that state till the end of the Full 
Feature Phase, i.e. the termination of the connection.  The 
Architecture assumes that when a connection is normally 
logged out, the Datamover layer needs to be notified so that 
its connection-level opaque resources (see section 7.1) may 
now be freed up.  DA thus defines a Connection_Terminate 
Operational Primitive (section 8.7) to model this 
interaction.  The Architecture further assumes that when a 
connection termination happens without iSCSI layer’s 
involvement (e.g., TCP RST), the Datamover layer is capable 
of locally cleaning up its task-level and connection-level 
resources before notifying the iSCSI layer of the fact.  DA 
thus defines the Connection_Terminate_Notify Operational 
Primitive (section 9.2) to model this interaction. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 21] 
 

Figure 7 and Figure 8 in section 16.2 illustrate the 
interactions between the iSCSI and Datamover layers in normal 
and unexpected connection termination scenarios.   



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 22] 
 

8 Operational Primitives provided by the Datamover layer 

While the iSCSI specification itself does not have a notion 
of Operational Primitives, any iSCSI layer implementing the 
iSCSI specification functionally requires the following 
Operational Primitives from its Datamover layer.  Thus, any 
Datamover protocol compliant with this architecture MUST 
implement the Operational Primitives described in this 
section.  These Operational Primitives are invoked by the 
iSCSI layer as appropriate.  Unless otherwise stated, all the 
following Operational Primitives may be used both on the 
initiator side and the target side.  In general programming 
terminology, this set of Operational Primitives may be 
construed as “down calls”. 

 

1) Send_Control 

2) Put_Data 

3) Get_Data 

4) Allocate_Connection_Resources 

5) Deallocate_Connection_Resources 

6) Enable_Datamover 

7) Connection_Terminate 

8) Notice_Key_Values 

9) Deallocate_Task_Resources 

  

8.1 Send_Control 

Input qualifiers: Connection_Handle, iSCSI PDU-specific 
qualifiers 

Return Results: Not specified. 

An iSCSI layer requests its local Datamover layer to transmit 
an iSCSI control-type PDU to the peer iSCSI layer operating 
in the remote iSCSI node by this Operational Primitive.  The 
Datamover layer performs the requested operation, and may add 
its own protocol headers in doing so.  The iSCSI layer MUST 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 23] 
 

NOT invoke the Send_Control Operational Primitive on an iSCSI 
connection that is not yet Datamover-assisted.  

 

An initiator iSCSI layer requesting the transfer of a SCSI 
command PDU or a target iSCSI layer requesting the transfer 
of a SCSI response PDU are examples of invoking the 
Send_Control Operational Primitive.  As section 10.3.1 
illustrates later on, the iSCSI PDU-specific qualifiers in 
this example are: BHS and AHS, DataDescriptorOut, 
DataDescriptorIn, ImmediateDataSize, and UnsolicitedDataSize 

 

8.2 Put_Data 

Input qualifiers: Connection_Handle, contents of a SCSI Data-
In PDU header, Data_Descriptor, Notify_Enable 

Return Results: Not specified. 

An iSCSI layer requests its local Datamover layer to transmit 
the data identified by the Data_Descriptor for the SCSI Data-
In PDU to the peer iSCSI layer on the remote iSCSI node by 
this Operational Primitive.  The Datamover layer performs the 
operation by using its own protocol means, completely 
transparent to the remote iSCSI layer.  The iSCSI layer MUST 
NOT invoke the Put_Data Operational Primitive on an iSCSI 
connection that is not yet Datamover-assisted.  

 

The Notify_Enable qualifier is used to request the local 
Datamover layer to generate or to not generate the eventual 
local completion notification to the iSCSI layer for this 
Put_Data invocation.  For detailed semantics of this 
qualifier, see section 9.3. 

 

A Put_Data Primitive may only be invoked by an iSCSI layer on 
the target to its local Datamover layer. 

 

A target iSCSI layer requesting the transfer of an iSCSI read 
data sequence (also known as a read burst) is an example of 
invoking the Put_Data Operational Primitive. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 24] 
 

 

8.3 Get_Data 

Input qualifiers: Connection_Handle, contents of an R2T PDU, 
Data_Descriptor, Notify_Enable 

Return Results: Not specified. 

An iSCSI layer requests its local Datamover layer to retrieve 
certain data identified by the R2T PDU from the peer iSCSI 
layer on the remote iSCSI node into the buffer identified by 
the Data_Descriptor by invoking this Operational Primitive.  
The Datamover layer performs the operation by using its own 
protocol means, completely transparent to the remote iSCSI 
layer.  The iSCSI layer MUST NOT invoke the Get_Data 
Operational Primitive on an iSCSI connection that is not yet 
Datamover-assisted.  

 

The Notify_Enable qualifier is used to request the local 
Datamover layer to generate or to not generate the eventual 
local completion notification to the iSCSI layer for this 
Get_Data invocation.  For detailed semantics of this 
qualifier, see section 9.3. 

 

A Get_Data Primitive may only be invoked by an iSCSI layer on 
the target to its local Datamover layer. 

 

A target iSCSI layer requesting the transfer of an iSCSI 
write data sequence (also known as a write burst) is an 
example of invoking the Get_Data Operational Primitive. 

 

8.4 Allocate_Connection_Resources 

Input qualifiers: Connection_Handle[, Resource_Descriptor ] 

Return Results: Status. 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover layer to perform all the 
Datamover-specific resource allocations required for the full 
feature phase of an iSCSI connection.  The Connection_Handle 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 25] 
 

identifies the connection the iSCSI layer is requesting the 
resource allocation for in order to eventually transition the 
connection to be a Datamover-assisted iSCSI connection.  Note 
that the Datamover layer however does not allocate any 
Datamover-specific task-level resources upon invocation of 
this Primitive. 

 

An iSCSI layer, in addition, optionally specifies the 
implementation-specific resource requirements for the iSCSI 
connection to the Datamover layer, by passing an input 
qualifier called Resource_Descriptor.  The exact structure of 
a Resource_Descriptor is implementation-dependent, and hence 
structurally opaque to DA. 

 

A return result of Status=success means that the 
Allocate_Connection_Resources invocation corresponding to 
that Connection_Handle succeeded.  If an 
Allocate_Connection_Resources invocation is made for a 
Connection_Handle for which an earlier invocation succeeded, 
the return Status must be success and the request will be 
ignored by the Datamover layer.  A return result of 
Status=failure means that the Allocate_Connection_Resources 
invocation corresponding to that Connection_Handle failed. 
There MUST NOT be more than one Allocate_Connection_Resources 
Primitive invocation outstanding for a given 
Connection_Handle at any time. 

 

The iSCSI layer must invoke the Allocate_Connection_Resources 
Primitive before the invocation of the Enable_Datamover 
Primitive. 

 

8.5 Deallocate_Connection_Resources 

Input qualifiers: Connection_Handle  

Return Results: Not specified. 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover layer to deallocate all the 
Datamover-specific resources that may have been allocated 
earlier for the Transport Connection identified by the 
Connection_Handle.  The iSCSI layer may invoke this 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 26] 
 

Operational Primitive when the Datamover-specific resources 
associated with the Connection_Handle are no longer necessary 
(such as the Login failure of the corresponding iSCSI 
connection). 

 

8.6 Enable_Datamover 

Input qualifiers: Connection_Handle, 
Transport_Connection_Descriptor [, Final_Login_Response_PDU] 

Return Results: Not specified. 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover layer to assist all further 
iSCSI exchanges on the iSCSI connection (i.e. to make the 
connection Datamover-assisted) identified by the 
Connection_Handle, for which the Datamover-specific resource 
allocation was earlier made. The iSCSI layer MUST NOT invoke 
the Enable_Datamover Operational Primitive for an iSCSI 
connection unless there was a corresponding prior resource 
allocation.  

 

The Final_Login_Response_PDU input qualifier is applicable 
only for a target, and contains the final Login Response that 
concludes the iSCSI Login phase and which must be sent as a 
byte stream as expected by the initiator iSCSI layer.  When 
this qualifier is used, the target-Datamover layer MUST 
transmit this final Login Response before Datamover 
assistance is enabled for the Transport Connection. 

 

The iSCSI layer identifies the specific Transport Connection 
associated with the Connection_Handle to the Datamover layer 
by specifying the Transport_Connection_Descriptor. The exact 
structure of this Descriptor is implementation-dependent. 

 

8.7 Connection_Terminate 

Input qualifiers: Connection_Handle 

Return Results: Not specified. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 27] 
 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover layer to terminate the Transport 
Connection and deallocate all the connection and task 
resources associated with the Connection_Handle.  When this 
Operational Primitive invocation returns to the iSCSI layer, 
the iSCSI layer may assume the full ownership of all the 
iSCSI-level resources, e.g. I/O Buffers, associated with the 
connection.  This Operational Primitive may be invoked only 
with a valid Connection_Handle and the Transport Connection 
associated with the Connection_Handle must already be 
Datamover-assisted. 

 

8.8 Notice_Key_Values 

Input qualifiers: Connection_Handle, Number of keys, a list 
of Key-Value pairs 

Return Results: Not specified. 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover layer to take note of the 
negotiated values of the listed keys for the Transport 
Connection.  This Operational Primitive may be invoked only 
with a valid Connection_Handle and the Key-Value pairs MUST 
be the current values that were successfully agreed upon by 
the iSCSI peers for the connection.  The Datamover layer may 
use the values of the keys to aid the Datamover operation as 
it deems appropriate.  The specific keys to be passed in as 
input qualifiers and the point(s) in time this Operational 
Primitive is invoked are implementation-dependent. 

 

8.9 Deallocate_Task_Resources 

Input qualifiers: Connection_Handle, ITT 

Return Results: Not specified. 

By invoking this Operational Primitive, an iSCSI layer 
requests its local Datamover Layer to deallocate all 
Datamover-specific resources that earlier may have been 
allocated for the task identified by the ITT qualifier.  The 
iSCSI layer uses this Operational Primitive during exception 
processing when one or more active tasks are to be terminated 
without corresponding SCSI Response PDUs.  This Primitive 
MUST be invoked for each active task terminated without a 
SCSI Response PDU.  This Primitive MUST NOT be invoked by the 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 28] 
 

iSCSI layer when a SCSI Response PDU normally concludes a 
task.  When a SCSI Response PDU normally concludes a task 
(even if the SCSI Status was not a success), the Datamover 
layer is assumed to have automatically deallocated all 
Datamover-specific task resources for that task.  Refer to 
section 7.2 for a related discussion on the Architectural 
assumptions on the task-level Datamover resource management, 
especially with respect to when the resources are assumed to 
be allocated. 

  



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 29] 
 

9 Operational Primitives provided by the iSCSI layer 

While the iSCSI specification itself does not have a notion 
of Operational Primitives, any iSCSI layer implementing the 
iSCSI specification would have to provide the following 
Operational Primitives to its local Datamover layer.  Thus, 
any iSCSI protocol implementation compliant with this 
architecture MUST implement the Operational Primitives 
described in this section.  These Operational Primitives are 
invoked by the Datamover layer as appropriate and when the 
iSCSI connection is Datamover-assisted. Unless otherwise 
stated, all the following Operational Primitives may be used 
both on the initiator side and the target side.  In general 
programming terminology, this set of Operational Primitives 
may be construed as “up calls”. 

 

1) Control_Notify 

2) Connection_Terminate_Notify 

3) Data_Completion_Notify 

4) Data_ACK_Notify 

 

9.1 Control_Notify 

Input qualifiers: Connection_Handle, an iSCSI control-type 
PDU. 

Return Results: Not specified. 

A Datamover layer notifies its local iSCSI layer, via this 
Operational Primitive, of the arrival of an iSCSI control-
type PDU from the peer Datamover layer on the remote iSCSI 
node.  The iSCSI layer processes the control-type PDU as 
defined in [RFC3720]. 

 

A target iSCSI layer being notified of the arrival of a SCSI 
Command is an example of invoking the Control_Notify 
Operational Primitive. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 30] 
 

Note that implementations may choose to describe the “iSCSI 
control-type PDU” qualifier in this notification using a 
Data_Descriptor (section 5.2) and not necessarily one 
contiguous buffer.   

 

9.2 Connection_Terminate_Notify 

Input qualifiers: Connection_Handle 

Return Results: Not specified. 

A Datamover layer notifies its local iSCSI layer on an 
unsolicited termination or failure of an iSCSI connection 
providing the Connection_Handle associated with the iSCSI 
Connection.  The iSCSI Layer MUST consider the 
Connection_Handle to be invalid upon being so notified.  The 
iSCSI layer processes the connection termination as defined 
in [RFC3720].  The Datamover layer MUST deallocate the 
connection and task resources associated with the terminated 
connection before notifying the iSCSI layer of the 
termination via this Operational Primitive.  

 

A target iSCSI layer being notified of an ungraceful 
connection termination by the Datamover layer when the 
underlying Transport Connection is torn down due to receiving 
a TCP RESET is one example when the 
Connection_Terminate_Notify Operational Primitive is invoked. 

 

9.3 Data_Completion_Notify 

Input qualifiers: Connection_Handle, ITT, SN 

Return Results: Not specified. 

A Datamover layer notifies its local iSCSI layer on 
completing the retrieval of the data or upon sending the 
data, as requested in a prior iSCSI data-type PDU, from/to 
the peer Datamover layer on the remote iSCSI node via this 
Operational Primitive.  The iSCSI layer processes the 
operation as defined in [RFC3720]. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 31] 
 

SN may be either the DataSN associated with the SCSI Data-In 
PDU or R2TSN associated with the R2T PDU depending on the 
SCSI operation.  Note that, for targets, a TTT (see 
[RFC3720]) could have been specified instead of an SN.  
However, the considered choice was to leave the SN to be the 
qualifier for two reasons – a) it is generic and applicable 
to initiators and targets as well as Data-in and Data-out, 
and b) having both SN and TTT qualifiers for the notification 
was considered onerous on the Datamover layer, in terms of 
state maintenance for each completion notification.  The 
implication of this choice is that iSCSI target 
implementations will have to adapt to using the ITT-SN tuple 
in associating the solicited data to the appropriate task, 
rather than the ITT-TTT tuple for doing the same. 

 

If Notify_Enable was set in either a Put_Data or a Get_Data 
invocation, the Datamover layer MUST invoke the 
Data_Completion_Notify Operational Primitive upon completing 
that requested data transfer.  If the Notify_Enable was 
cleared in either a Put_Data or a Get_Data invocation, the 
Datamover layer MUST NOT invoke the Data_Completion_Notify 
Operational Primitive upon completing that requested data 
transfer. 

 

A Data_Completion_Notify invocation serves to notify the 
iSCSI layer of the Put_Data or Get_Data completion 
respectively.  As earlier noted in sections 8.2 and 8.3, 
specific Datamover protocol definitions may restrict the 
usage scope of Put_Data and Get_Data, and thus implicitly the 
usage scope of Data_Completion_Notify. 

 

A target iSCSI layer being notified of the retrieval of a 
write data sequence is an example of invoking the 
Data_Completion_Notify Operational Primitive. 

 

9.4 Data_ACK_Notify 

Input qualifiers: Connection_Handle, ITT, DataSN 

Return Results: Not specified. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 32] 
 

A target Datamover layer notifies its local iSCSI layer of 
the arrival of a previously requested data acknowledgement 
from the peer Datamover layer on the remote (initiator) iSCSI 
node via this Operational Primitive.  The iSCSI layer 
processes the data acknowledgement notification as defined in 
[RFC3720]. 

 

A target iSCSI layer being notified of the arrival of a data 
acknowledgement for a certain SCSI Read data PDU is the only 
example of invoking the Data_ACK_Notify Operational 
Primitive. 

 

 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 33] 
 

10 Datamover Interface (DI) 

10.1 Overview 

This chapter describes the interactions model between iSCSI 
and Datamover layers when the iSCSI connection is Datamover-
assisted so the iSCSI layer may carry out the following - 

- send iSCSI data-type PDUs and exchange iSCSI control-type 
PDUs, and 

- handle asynchronous notifications such as completion of 
data sequence transfer, and connection failure. 

This chapter relies on the notion of Operational Primitives 
(section 5.4) to define DI. 

10.2 Interactions for handling asynchronous notifications 

10.2.1 Connection termination 

As stated in section 9.2, the Datamover layer notifies the 
iSCSI layer of a failed or terminated connection via the 
Connection_Terminate_Notify Operational Primitive.  The iSCSI 
layer MUST consider the connection as unusable upon the 
invocation of this Primitive and handle the connection 
termination as specified in [RFC3720]. 

 

10.2.2 Data transfer completion 

As stated in section 9.3, the Datamover layer notifies the 
iSCSI layer of a completed data transfer operation via the 
Data_Completion_Notify Operational Primitive.  The iSCSI 
layer processes the transfer completion as specified in 
[RFC3720]. 

 

10.2.2.1 Completion of a requested SCSI Data transfer 

The Datamover layer, to notify the iSCSI layer of the 
completion of a requested iSCSI data-type PDU transfer, uses 
the Data_Completion_Notify Operational Primitive with the 
following input qualifiers. 

 

a) Connection_Handle 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 34] 
 

b) ITT: Initiator Task Tag semantics as defined in 
[RFC3720] 

c) SN: DataSN for a SCSI Data-in/Data-out PDU, and R2TSN 
for an iSCSI R2T PDU.  The semantics for both types of 
sequence numbers are as defined in [RFC3720].  

 

The rationale for choosing SN is explained in section 9.3. 

Every invocation of the Data_Completion_Notify Operational 
Primitive MUST be preceded by an invocation of the Put_Data 
or Get_Data Operational Primitive with the Notify_Enable 
qualifier set by the iSCSI layer at an earlier point in time. 

 

10.2.3 Data acknowledgement 

[RFC3720] allows the iSCSI targets to optionally solicit data 
acknowledgement from the initiator for one or more Data-in 
PDUs, via setting of the A-bit on a Data-in PDU. The 
Data_ACK_Notify Operational Primitive with the following 
input qualifiers is used by the target Datamover layer to 
notify the local iSCSI layer of the arrival of data 
acknowledgement of a previously solicited iSCSI read data 
acknowledgement.  This Operational Primitive thus is appli-
cable only to iSCSI targets. 

 

a) Connection_Handle 

b) ITT: Initiator Task Tag semantics as defined in [RFC3720] 

c) DataSN: of the next SCSI Data-in PDU which immediately 
follows the SCSI Data-in PDU with the A-bit set to which 
this notification corresponds, with semantics as defined in 
[RFC3720]. 

 

Every invocation of the Data_ACK_Notify Operational Primitive 
MUST be preceded by an invocation of the Put_Data Operational 
Primitive by the iSCSI target layer with the A-bit set to 1 
at an earlier point in time. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 35] 
 

10.3 Interactions for sending an iSCSI PDU 

This section discusses the interactions model for sending 
each of the iSCSI PDUs defined in [RFC3720].  A 
Connection_Handle (see section 5.3) is assumed to qualify 
each of these interactions so that the Datamover layer can 
route it to the appropriate Transport Connection.  The 
qualifying Connection_Handle is not explicitly listed in the 
subsequent sections. 

 

Note that the defined list of input qualifiers represents the 
semantically required set for the Datamover layer to consider 
in implementing the Primitive in each interaction described 
in this section (see section 5.4 for an elaboration).  
Implementations may choose to deduce the qualifiers in ways 
that are optimized for the implementation specifics.  Two 
examples of this are: 

1. For SCSI Command (section 10.3.1), deducing the 
ImmediateDataSize input qualifier from the 
DataSegmentLength field of the SCSI Command PDU. 

2. For SCSI Data-Out (section 10.3.5.1), deducing the 
DataDescriptorOut input qualifier from the associated 
SCSI Command invocation qualifiers (assuming such state 
is maintained) in conjunction with BHS fields of the 
SCSI Data-out PDU.   

 

10.3.1 SCSI Command  

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
SCSI Command PDU. 

 

a) BHS and AHS, if any, of the SCSI Command PDU as defined in 
[RFC3720] 

b) DataDescriptorOut: that defines the I/O Buffer meant for 
Data-out for the entire command, in the case of a write or 
bidirectional command 

c) DataDescriptorIn: that defines the I/O Buffer meant for 
Data-in for the entire command, in the case of a read or 
bidirectional command 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 36] 
 

d) ImmediateDataSize: that defines the number of octets of 
immediate unsolicited data for a write/bidirectional 
command  

e) UnsolicitedDataSize: that defines the number of octets of 
immediate and non-immediate unsolicited data for a 
write/bidirectional command. 

10.3.2 SCSI Response  

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
SCSI Response PDU. 

 

a) BHS of the SCSI Response PDU as defined in [RFC3720] 

b) DataDescriptorStatus: that defines the iSCSI buffer which 
contains the sense and response information for the command 

  

10.3.3 Task Management Function Request 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Task Management Function Request PDU. 

 

a) BHS of the Task Management Function Request PDU as defined 
in [RFC3720] 

b) DataDescriptorOut: that defines the I/O Buffer meant for 
Data-out for the entire command, in the case of a write or 
bidirectional command  (Only valid if Function=”TASK 
REASSIGN” – [RFC3720] ] 

c) DataDescriptorIn: that defines the I/O Buffer meant for 
Data-in for the entire command, in the case of a read or 
bidirectional command (Only valid if Function=”TASK 
REASSIGN” - [RFC3720] ) 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 37] 
 

10.3.4 Task Management Function Response 

The Send_Control Operational Primitive with the following 
input qualifier is used for requesting the transmission of a 
Task Management Function Response PDU. 

 

a) BHS of the Task Management Function Response PDU as defined 
in [RFC3720] 

 

10.3.5 SCSI Data-out & SCSI Data-in 

10.3.5.1 SCSI Data-out 

The Send_Control Operational Primitive with the following 
input qualifiers is used by the initiator iSCSI layer for 
requesting the transmission of a SCSI Data-out PDU carrying 
the non-immediate unsolicited data. 

 

a) BHS of the SCSI Data-out PDU as defined in [RFC3720] 

b) DataDescriptorOut: that defines the I/O Buffer with the 
Data-out to be carried in the iSCSI data segment of the PDU 

 

10.3.5.2 SCSI Data-in 

The Put_Data Operational Primitive with the following input 
qualifiers is used by the target iSCSI layer for requesting 
the transmission of the data carried by a SCSI Data-in PDU. 

 

a) BHS of the SCSI Data-in PDU as defined in [RFC3720] 

b) DataDescriptorIn: that defines the I/O Buffer with the 
Data-in being requested for transmission 

 

10.3.6 Ready To Transfer (R2T) 

The Get_Data Operational Primitive with the following input 
qualifiers is used by the target iSCSI layer for requesting 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 38] 
 

the retrieval of the data as specified by the semantic 
content of an R2T PDU. 

 

a) BHS of the Ready To Transfer PDU as defined in [RFC3720] 

b) DataDescriptorOut: that defines the I/O Buffer for the 
Data-out being requested for retrieval 

 

10.3.7 Asynchronous Message 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of 
an Asynchronous Message PDU. 

 

a) BHS of the Asynchronous Message PDU as defined in [RFC3720] 

b) DataDescriptorSense: that defines an iSCSI buffer which 
contains the sense and iSCSI Event information. 

  

10.3.8 Text Request 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Text Request PDU. 

 

a) BHS of the Text Request PDU as defined in [RFC3720] 

b) DataDescriptorTextOut: that defines the iSCSI Text Request 
buffer 

 

10.3.9 Text Response 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Text Response PDU. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 39] 
 

a) BHS of the Text Response PDU as defined in [RFC3720] 

b) DataDescriptorTextIn: that defines the iSCSI Text Response 
buffer 

 

10.3.10 Login Request 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Login Request PDU. 

 

a) BHS of the Login Request PDU as defined in [RFC3720] 

b) DataDescriptorLoginRequest: that defines the iSCSI Login 
Request buffer 

 

Note that specific Datamover protocols may choose to disallow 
the standard DA Primitives from being used for the iSCSI 
Login phase.  When used in conjunction with such Datamover 
protocols, an attempt to send a Login Request via the 
Send_Control Operational Primitive invocation is clearly an 
error scenario, as the Login Request PDU is being sent while 
the connection is in the iSCSI full feature phase.  It is 
outside the scope of this document to specify the resulting 
implementation behavior in this case - [RFC3720] already 
defines the error handling for this error scenario.  

 

10.3.11 Login Response 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Login Response PDU. 

 

a) BHS of the Login Response PDU as defined in [RFC3720] 

b) DataDescriptorLoginResponse: that defines the iSCSI Login 
Response buffer 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 40] 
 

Note that specific Datamover protocols may choose to disallow 
the standard DA Primitives from being used for the iSCSI 
Login phase.  When used in conjunction with such Datamover 
protocols, an attempt to send a Login Response via the 
Send_Control Operational Primitive invocation is clearly an 
error scenario, as the Login Response PDU is being sent while 
in the iSCSI full feature phase.  It is outside the scope of 
this document to specify the resulting implementation 
behavior in this case - [RFC3720] already defines the error 
handling for this error scenario.  

 

10.3.12 Logout Command 

The Send_Control Operational Primitive with the following 
input qualifier is used for requesting the transmission of a 
Logout Command PDU. 

 

a) BHS of the Logout Command PDU as defined in [RFC3720] 

 

10.3.13 Logout Response 

The Send_Control Operational Primitive with the following 
input qualifier is used for requesting the transmission of a 
Logout Response PDU. 

 

a) BHS of the Logout Response PDU as defined in [RFC3720] 

 

10.3.14  SNACK Request 

The Send_Control Operational Primitive with the following 
input qualifier is used for requesting the transmission of a 
SNACK Request PDU. 

 

a) BHS of the SNACK Request PDU as defined in [RFC3720] 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 41] 
 

10.3.15 Reject 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
Reject PDU. 

 

a) BHS of the Reject PDU as defined in [RFC3720] 

b) DataDescriptorReject: that defines the iSCSI Reject buffer 

         

 

10.3.16 NOP-Out 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
NOP-Out PDU. 

 

a) BHS of the NOP-Out PDU as defined in [RFC3720] 

b) DataDescriptorNOPOut: that defines the iSCSI Ping data 
buffer 

 

10.3.17 NOP-In 

The Send_Control Operational Primitive with the following 
input qualifiers is used for requesting the transmission of a 
NOP-In PDU. 

 

a) BHS of the NOP-In PDU as defined in [RFC3720] 

b) DataDescriptorNOPIn: that defines the iSCSI Return Ping 
data buffer 

 

10.4 Interactions for receiving an iSCSI PDU 

The only PDUs that are received by an iSCSI layer operating 
on a Datamover layer are the iSCSI control-type PDUs.  The 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 42] 
 

Datamover layer delivers the iSCSI control-type PDUs as they 
arrive, qualifying each with the Connection_Handle (see 
section 5.3) that identifies the iSCSI connection the PDU is 
meant for.  The subsequent processing of the iSCSI control-
type PDUs proceeds as defined in [RFC3720]. 

 

10.4.1 General Control-type PDU notification 

This sub-section describes the general mechanics applicable 
to several control-type PDUs.  The following sub-sections 
note additional considerations for control-type PDUs not 
covered in this sub-section. 

 

The Control_Notify Operational Primitive is used for  
notifying the arrival of the following iSCSI control-type 
PDUs: SCSI Command, SCSI Response, Task Management Function 
Request, Task Management Function Response, Asynchronous 
Message, Text Request, Text Response, Logout command, Logout 
Response, SNACK, Reject, NOP-Out, NOP-In. 

 

10.4.2 SCSI Data Transfer PDUs 

10.4.2.1 SCSI Data-out 

The Control_Notify Operational Primitive is used for 
notifying the iSCSI layer of the arrival of a SCSI Data-out 
PDU carrying the non-immediate unsolicited data.  Note 
however that the solicited SCSI Data-out arriving on the 
target is not notified to the iSCSI layer using the 
Control_Notify Primitive because the solicited SCSI Data-out 
was not sent by the initiator iSCSI layer as control-type 
PDUs. 

 

10.4.2.2 SCSI Data-in 

The arrival of the SCSI Data-in is not notified to the iSCSI 
layer by the Datamover layer at the initiator, because SCSI 
Data-in is an iSCSI data-type PDU (see section 5.1).  The 
iSCSI layer at the initiator however may infer the arrival of 
the SCSI Data-in when it receives a subsequent notification 
of the SCSI Response PDU via a Control_Notify invocation.  



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 43] 
 

 

While this document does not contemplate the possibility of a 
Data-in PDU being received at the initiator iSCSI layer, 
specific Datamover protocols may define how to deal with an 
unexpected inbound SCSI Data-in PDU that may result in the 
initiator iSCSI layer receiving the Data-in PDU.  This 
document leaves the details of handling this error scenario 
to the specific Datamover protocols, so each may define the 
appropriate error handling specific to the Datamover 
environment. 

 

10.4.2.3 Ready To Transfer (R2T) 

Because an R2T PDU is an iSCSI data-type PDU (see section 
5.1) that is not delivered as-is to the initiator iSCSI 
layer, the arrival of an R2T PDU is not notified to the iSCSI 
layer by the Datamover layer.  When an iSCSI node sends an 
R2T PDU to its local Datamover layer, the local and remote 
Datamover layers transparently bring about the data transfer 
requested by the R2T PDU. 

 

While this document does not contemplate the possibility of 
an R2T PDU being received at the initiator iSCSI layer, 
specific Datamover protocols may define how to deal with an 
unexpected inbound R2T PDU that may result in the initiator 
iSCSI layer receiving the R2T PDU.  This document leaves the 
details of handling this error scenario to the specific 
Datamover protocols, so each may define the appropriate error 
handling specific to the Datamover environment. 

 

10.4.3 Login Request 

The Control_Notify Operational Primitive is used for 
notifying the target iSCSI layer of the arrival of a Login 
Request PDU.  Note that specific Datamover protocols may 
choose to disallow the standard DA Primitives from being used 
for the iSCSI Login phase.  When used in conjunction with 
such Datamover protocols, the arrival of a Login Request 
necessitating the Control_Notify Operational Primitive 
invocation is clearly an error scenario, as the Login Request 
PDU is arriving in the iSCSI full feature phase.  It is 
outside the scope of this document to specify the resulting 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 44] 
 

implementation behavior in this case - [RFC3720] already 
defines the error handling in this error scenario.  

 

10.4.4 Login Response 

The Control_Notify Operational Primitive is used for 
notifying the initiator iSCSI layer of the arrival of a Login 
Response PDU.  Note that specific Datamover protocols may 
choose to disallow the standard DA Primitives from being used 
for the iSCSI Login phase.  When used in conjunction with 
such Datamover protocols, the arrival of a Login Response 
necessitating the Control_Notify Operational Primitive 
invocation is clearly an error scenario, as the Login 
Response PDU is arriving in the iSCSI full feature phase.  It 
is outside the scope of this document to specify the 
resulting implementation behavior in this case - [RFC3720] 
already defines the error handling in this error scenario.  

  



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 45] 
 

11 Security Considerations 

11.1 Architectural Considerations 

DA enables compliant iSCSI implementations to realize a 
control and data separation in the way they interact with 
their Datamover protocols.  Note however that this separation 
does not imply a separation in transport mediums between 
control traffic and data traffic - basic iSCSI architecture 
with respect to tasks and PDU relationships to tasks remains 
unchanged.  [RFC3720] defines several MUST requirements on 
ordering relationships across control and data for a given 
task besides a mandatory deterministic task allegiance model 
- DA does not change this basic architecture (DA has a 
normative reference on [RFC3720]) nor allow any additional 
flexibility in compliance in this area.  To summarize, 
sending bulk data transfers (prompted by Put_Data and 
Get_Data Primitive invocations) on a different transport 
medium would be as ill-advised as sending just the Data-
out/Data-in PDUs on a different TCP connection in RFC 3720-
based iSCSI implementations.  Consequently, all the iSCSI-
related security text in [RFC3723] is directly applicable to 
a DA-enabled iSCSI implementation. 

 

Another area with security implications is the Datamover 
connection resource management model which DA defines – 
particularly the Allocate_Connection_Resources Primitive.  An 
inadvertent realization of this model could leave an iSCSI 
implementation exposed to denial of service attacks.  As 
Figure 2 and Figure 3 in section 16.2 illustrate, the most 
effective countermeasure to this potential attack consists of 
performing the Datamover resource allocation when the iSCSI 
layer is sufficiently far along in the iSCSI Login Phase that 
it is reasonably certain that the peer side is not an 
attacker.  In particular, if the Login Phase includes a 
SecurityNegotiation stage, an iSCSI end node MUST defer the 
Datamover connection resource allocation (i.e. invoking the 
Allocate_Connection_Resources Primitive) to the 
LoginOperationalNegotiation stage ([RFC3720]) so that the 
resource allocation happens post-authentication.  This 
considerably minimizes the potential for a denial of service 
attack.   

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 46] 
 

11.2 Wire Protocol Considerations 

In view of the fact that the DA architecture itself does not 
define any new wire protocol nor propose modifications to the 
existing protocols, there are no additional wire protocol 
security considerations in employing DA itself.  However, a 
DA-compliant iSCSI implementation MUST comply with all the 
iSCSI-related requirements stipulated in [RFC3723] and 
[RFC3720].  Note further that in realizing DA, each Datamover 
protocol must define and elaborate as appropriate on any 
additional security considerations resulting from the use of 
that Datamover protocol. 

 

All Datamover protocol designers are strongly recommended to 
refer to [RDDPSEC] for the types of security issues to 
consider.  While [RDDPSEC] elaborates on the security 
considerations applicable to an RDDP-based Datamover 
([iSER]), the document is representative of the type of 
analysis of resource exhaustion and the application of 
countermeasures that needs to be done for any Datamover 
protocol. 

  



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 47] 
 

12 IANA Considerations 

DA architecture does not have any IANA considerations. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 48] 
 

13 References and Bibliography 

13.1 Normative References 

[RFC3720] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, 
E. Zeidner, "Internet Small Computer Systems Interface 
(iSCSI)", RFC 3720, April 2004. 

[RFC3723] B. Aboba, J. Tseng, J. Walker, V. Rangan, F. 
Travostino, "Securing Block Storage Protocols over IP", 
RFC 3723, April 2004. 

[RFC2119] S. Bradner, “Key words for use in RFCs to Indicate 
Requirement Levels”, March 1997. 

13.2 Informative References 

[DDP] H. Shah et al., "Direct Data Placement over Reliable 
Transports", IETF Internet Draft draft-ietf-rddp-ddp-
06.txt (work in progress), June 2006. 

[iSER] M. Ko et al., “iSCSI Extensions for RDMA”, IETF 
Internet Draft draft-ietf-ips-iser-03.txt (work in 
progress),  April 2005. 

[RDDPSEC] J. Pinkerton et al., "DDP/RDMAP Security", IETF 
Internet Draft draft-ietf-rddp-security-07.txt (work in 
progress),  April 2005  

  

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 49] 
 

14 Authors' Addresses 

Mallikarjun Chadalapaka 
Hewlett-Packard Company 
8000 Foothills Blvd. 
Roseville, CA 95747-5668, USA 
Phone: +1-916-785-5621  
E-mail: cbm@rose.hp.com   
      
John L. Hufferd 
IBM  
San Jose CA, USA 
Phone: +1-408-256-0403 
E-mail: hufferd@us.ibm.com  
 
Julian Satran 
IBM, Haifa Research Lab 
Haifa University Campus - Mount Carmel 
Haifa 31905, Israel 
Phone +972-4-829-6264 
E-mail: Julian_Satran@il.ibm.com  

 
Hemal Shah 
Intel Corporation 
MS PTL1 
1501 South Mopac Expressway, #400 
Austin, TX 78746 USA 
Phone: +1 (512) 732-3963 
Email: hemal.shah@intel.com  

 
 

Comments may be sent to Mallikarjun Chadalapaka. 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 50] 
 

15 Acknowledgements 

The IP Storage (ips) Working Group in the Transport Area of 
IETF has been responsible for defining the iSCSI protocol 
(apart from a host of other relevant IP Storage protocols).  
The authors are grateful to the entire working group, whose 
work allowed this document to build on the concepts and 
details of the iSCSI protocol. 

 

In addition, the following individuals had reviewed and 
contributed to the improvement of this document.  The authors 
are grateful for their contribution. 

John Carrier 
Adaptec, Inc. 
691 S. Milpitas Blvd., Milpitas, CA 95035 USA 
Phone: +1 (360) 378-8526 
Email: john_carrier@adaptec.com 

 

Hari Ghadia 
Adaptec, Inc. 
691 S. Milpitas Blvd., Milpitas, CA 95035  USA 
Phone: +1 (408) 957-5608 
Email: hari_ghadia@adaptec.com 

 

Hari Mudaliar 
Adaptec, Inc. 
691 S. Milpitas Blvd., Milpitas, CA 95035  USA 
Phone: +1 (408) 957-6012 
Email: hari_mudaliar@adaptec.com 

 

Patricia Thaler 
Agilent Technologies, Inc. 
1101 Creekside Ridge Drive, #100, M/S-RG10, 
Roseville, CA 95678 
Phone: +1-916-788-5662 
email: pat_thaler@agilent.com 

 
 

Uri Elzur  
Broadcom Corporation 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 51] 
 

16215 Alton Parkway, Irvine, CA 92619-7013 USA 
Phone: +1 (949) 585-6432 
Email: Uri@Broadcom.com  

 

Mike Penna  
Broadcom Corporation 
16215 Alton Parkway,Irvine, CA 92619-7013 USA 
Phone: +1 (949) 926-7149 
Email: MPenna@Broadcom.com  

 
David Black 
EMC Corporation 
176 South St., Hopkinton, MA  01748, USA 
Phone: +1 (508) 293-7953 
Email: black_david@emc.com 

 

Ted Compton 
EMC Corporation 
Research Triangle Park, NC 27709, USA 
Phone: +1-919-248-6075 
Email: compton_ted@emc.com 

 

Dwight Barron  
Hewlett-Packard Company 
20555 SH 249, Houston, TX 77070-2698  USA 
Phone: +1 (281) 514-2769 
Email: Dwight.Barron@Hp.com  

 

Paul R. Culley 
Hewlett-Packard Company 
20555 SH 249, Houston, TX 77070-2698  USA 
Phone: +1 (281) 514-5543 
Email: paul.culley@hp.com 

 
Dave Garcia 
Hewlett-Packard Company 
19333 Vallco Parkway, Cupertino, Ca. 95014 USA 
Phone: +1 (408) 285-6116 
Email: dave.garcia@hp.com 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 52] 
 

 

Randy Haagens 
Hewlett-Packard Company 
8000 Foothills Blvd, MS 5668, Roseville CA 
Phone: +1-916-785-4578 
email: randy_haagens@hp.com 

 
 

Jeff Hilland 
Hewlett-Packard Company 
20555 SH 249, Houston, Tx. 77070-2698 USA 
Phone: +1 (281) 514-9489 
Email: jeff.hilland@hp.com 

 

Mike Krause  
Hewlett-Packard Company, 43LN 
19410 Homestead Road, Cupertino, CA 95014 USA 
Phone: +1 (408) 447-3191 
Email: krause@cup.hp.com  

 

Jim Wendt 
Hewlett-Packard Company 
8000 Foothills Blvd, MS 5668, Roseville CA 
Phone: +1-916-785-5198 
email: jim_wendt@hp.com 
 

 

Mike Ko  
IBM  
650 Harry Rd, San Jose, CA 95120  
Phone: +1 (408) 927-2085  
Email: mako@us.ibm.com  

 

Renato Recio 
IBM Corporation 
11501 Burnett Road, Austin, TX 78758 USA 
Phone: +1 (512) 838-1365 
Email: recio@us.ibm.com 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 53] 
 

Howard C. Herbert 
Intel Corporation 
MS CH7-404,5000 West Chandler Blvd., Chandler, AZ 85226 USA 
Phone: +1 (480) 554-3116 
Email: howard.c.herbert@intel.com 

 

Dave Minturn 
Intel Corporation 
MS JF1-210, 5200 North East Elam Young Parkway 
Hillsboro, OR 97124 USA 
Phone: +1 (503) 712-4106 
Email: dave.b.minturn@intel.com 

 

James Pinkerton 
Microsoft Corporation 
One Microsoft Way, Redmond, WA 98052 USA 
Phone: +1 (425) 705-5442 
Email: jpink@microsoft.com 

 

Tom Talpey 
Network Appliance 
375 Totten Pond Road, Waltham, MA 02451 USA 
Phone: +1 (781) 768-5329 
EMail: thomas.talpey@netapp.com  

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 54] 
 

16 Appendix 

16.1 Design considerations for a Datamover protocol 

This section discusses the specific considerations for RDMA-
based and RDDP-based Datamover protocols. 

 

a) Note that the modeling of interactions for SCSI Data-Out 
(section 10.3.5.1) is only used for unsolicited data 
transfer. 

b) The modeling of interactions for SNACK (section 10.3.14, 
and section 10.4.1) is not expected to be used given that 
one of the design requirements on the Datamover is that it 
“guarantees an error-free, reliable, in-order transport 
mechanism” (section 6).  The interactions for sending and 
receiving a SNACK are nevertheless modeled in this document 
because the receiving iSCSI layer can deterministically 
deal with an inadvertent SNACK.  This also shows the DA 
designers’ intent that DI is not meant to filter certain 
types of PDUs. 

c) The onus is on a reliable Datamover (per requirements 
stated in section 6) to realize end-to-end data 
acknowledgements via Datamover-specific means.  In view of 
this, even data-ACK-type SNACKs are unnecessary to be used.  
Consequently, an initiator may never request sending a 
SNACK Request in this model assuming that the proactive 
(timeout-driven) SNACK functionality is turned off in the 
legacy iSCSI code. 

d) Note that the current DA model for bootstrapping a 
Connection_Handle into service – i.e. associating a new 
iSCSI connection with a Connection_Handle – clearly implies 
that the iSCSI connection must already be in full feature 
phase when the Datamover layer comes into the stack.  This 
further implies that the iSCSI login phase must be carried 
out in the traditional “Byte streaming mode” with no 
assistance or involvement from the Datamover layer. 

 

16.2 Examples of Datamover interactions 

The figures described in this section provide some examples 
of the usage of Operational Primitives in interactions 
between the iSCSI layer and the Datamover layer. The 
following abbreviations are used in this section. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 55] 
 

Avail – Available 

Abted - Aborted 

Buf – I/O Buffer 

Cmd – Command 

Compl – Complete 

Conn - Connection 

Ctrl_Ntfy – Control_Notify 

Dal_Tk_Res – Deallocate_Task_Resources 

Data_Cmp_Nfy – Data_Completion_Notify 

Data_ACK_Nfy – Data_ACK_Notify 

DM – Datamover 

Imm - Immediate  

Snd_Ctrl – Send_Control 

Msg – Message 

Resp – Response 

Sol – Solicited 

TMF Req – Task Management Function Request 

TMF Res – Task Management Function Response 

Trans – Transfer 

Unsol – Unsolicited 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 56] 
 

     |   | Allocate_Connection_Resources  | D |    ^ 
     |   |------------------------------->| a |    | 
     |   |    Connection resources are    | t |    | 
     | i |     successfully allocated     | a |    |   iSCSI 
     | S |                                | m |    |   Login 
     | C |                                | o |    |   Phase 
     | S |                                | v |    | 
     | I |                                | e |    | 
     |   |                                | r |    | Login Phase 
     | L | Final Login Response (success)          v succeeds 
     | a |<----------------------------------------^    
     | y |                                | L |    |   iSCSI    
     | e |       Enable_Datamover         | a |    |   Full  
     | r |------------------------------->| y |    |   Feature  
     |   |     Datamover is enabled       | e |    |   Phase 
     |   |                                | r |    | 
     |   |   Full Feature Phase           |   |    | 
     |   |   control and data Transfer    |   |    v 
 

Figure 2 A successful iSCSI login on initiator 

 
     |   | Notice_Key_Values              |   |      | 
     |   |------------------------------->|   |      | 
     |   |  Datamover layer is notified   |   |      | 
     |   |  of the negotiated key values  |   |      | 
     |   |                                |   |      | 
     |   | Allocate_Connection_Resources  |   |      | 
     |   |------------------------------->| D |      | 
     |   |    Connection resources are    | a |      | 
     | i |     successfully allocated     | t |      |   iSCSI 
     | S |                                | a |      |   Login 
     | C |                                | m |Final |   Phase 
     | S |                                | o |Login | 
     | I |Enable_Datamover(Login Response)| v |Resp  | 
     |   |------------------------------->| e |---->vLogin Phase 
     | L |     Datamover is enabled       | r |      ^ succeeds 
     | a |                                |   |      |    
     | y |                                | L |      |   iSCSI    
     | e |                                | a |      |   Full  
     | r |                                | y |      |   Feature  
     |   |                                | e |      |   Phase 
     |   |      Full Feature Phase        | r |      | 
     |   |   control and data Transfer    |   |      | 
     |   |                                |   |      v 
 

Figure 3 A successful iSCSI login on target 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 57] 
 

     |   | Allocate_Connection_Resources  | D |      ^ 
     |   |------------------------------->| a |      | 
     |   |    Connection resources are    | t |      | 
     | i |     successfully allocated     | a |      |   iSCSI 
     | S |                                | m |      |   Login 
     | C |                                | o |      |   Phase 
     | S |                                | v |      | 
     | I |                                | e |      | 
     |   |                                | r |      | Login 
     |   |                                |   |      | Phase  
     | L | Final Login Response (failure)            v fails 
     | a |<------------------------------------------     
     | y |                                | L |                   
     | e | Deallocate_Connection_Resources| a |                 
     | r |------------------------------->| y |                 
     |   |     Datamover-specific         | e |                
     |   |     connection resources freed | r |            
     |   |                                |   |            
     |   |                                             
     |   | Connection terminated by standard means                           
     |   |--------------------------------------------->            

 

Figure 4 A failed iSCSI login on initiator 

   
     |   | Allocate_Connection_Resources  | D |      ^ 
     |   |------------------------------->| a |      | 
     |   |    Connection resources are    | t |      | 
     | i |     successfully allocated     | a |      |   iSCSI 
     | S |                                | m |      |   Login 
     | C |                                | o |      |   Phase 
     | S |                                | v |      | 
     | I |                                | e |      | 
     |   |                                | r |      | Login 
     |   |                                |   |      | Phase  
     | L | Final Login Response (failure)            v fails 
     | a |---------------------------------------------->     
     | y |                                | L |                   
     | e | Deallocate_Connection_Resources| a |                 
     | r |------------------------------->| y |                 
     |   |     Datamover-specific         | e |                
     |   |     connection resources freed | r |            
     |   |                                |   |            
     |   |                                             
     |   | Connection terminated by standard means                           
     |   |-------------------------------------------->            
 

Figure 5 A failed iSCSI login on target 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 58] 
 

     |   | Allocate_Connection_Resources  | D |     ^ 
     |   |------------------------------->| a |     | 
     |   |    Connection resources are    | t |     | 
     | i |     successfully allocated     | a |     |   iSCSI 
     | S |                                | m |     |   Login 
     | C |                                | o |     |   Phase 
     | S |                                | v |     | 
     | I |                                | e |     | 
     |   |                                | r |     |   
     | L | Login non-Final Request/Response         |  
     | a |<-----------------------------------------|    
     | y |    iSCSI layer decides not to  | L |     |        
     | e |    enable Datamover for this   | a |     |      
     | r |    connection                  | y |     |      
     |   |                                | e |     |     
     |   | Deallocate_Connection_Resources| r |     | 
     |   |------------------------------->|   |     | 
     |   |     All Datamover-specific     |   |     | 
     |   |     resources deallocated      |   |     | 
     |   |                                |   |     | Login 
     |   |                                |   |     | Phase  
     |   |                                          | continues 
     |   | Regular Login negotiation continues      |                        
     |   |<---------------------------------------->|                         
     |   |                                          . 
     |   |                                          . 
     |   |                                          . 
 
 
 

Figure 6 iSCSI does not enable the Datamover 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 59] 
 

     |   |                                |   |   ^ 
     |   |  Full Feature Phase Control &  |   |   | 
     |   |    Data Transfer Using DM      | D |   | iSCSI 
     |   |                                | a |   | Full Feature 
     | i |                                | t |   | Phase 
     | S |                                | a |   | (DM Enabled) 
     | C |                                | m |   |    
     | S |    Successful iSCSI Logout     | o |   | 
     | I |                                | v |   v 
     |   |     Connection_Terminate       | e |          
     | L |------------------------------->| r |          
     | a |   Connection is terminated     |   |       
     | y |   Datamover-specific resources | L | Transport         
     | e |   deallocated, both connection | a | Connection      
     | r |   level & task level           | y | is terminated      
     |   |                                | e |            
     |   |                                | r |       
     |   |                                |   |       
     |   |                                |   |   

Figure 7 A normal iSCSI connection termination 

 
  
 
 
     |   |                                |   |   ^ 
     |   |  Full Feature Phase Control &  | D |   | iSCSI    
     |   |    Data Transfer Using DM      | a |   | Full Feature  
     | i |                                | t |   | Phase 
     | S |                                | a |   | (DM Enabled) 
     | C |                                | m |   v 
     | S |                                | o |<--Transport      
     | I |   Datamover-specific resources | v | Connection 
     |   |   deallocated, both connection | e | Terminated (e.g.  
     | L |   level & task level           | r | unexpected 
     | a |                                |   | FIN/RESET)          
     | y |                                | L |                              
     | e |   Connection_Terminate_Notify  | a |                               
     | r |<-------------------------------| y |                              
     |   |                                | e |                
     |   |                                | r |                
     |   |                                |   | 
 

Figure 8 An abnormal iSCSI connection termination 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 60] 
 

     <-----Initiator----->                <-------Target-------> 
 
     |  |          |  | DM Msg holding |  |            |  | 
SCSI |  |          |  | SCSI Cmd PDU & |  |            |  |SCSI 
Cmd  |  | Snd_Ctrl |  |Unsol Imm Data  |  |Ctrl_Notify |  |Cmd 
---->|  |--------->|  |--------------->|  |----------->|  |---> 
     |  |          |  |                |  |            |  | 
     |  |          |  | DM Msg holding |  |            |  |  
     |  | Snd_Ctrl |  |SCSI Dataout PDU|  |Ctrl_Notify |  | 
     |  |--------->|  |--------------->|  |----------->|  |    
     |  |    .     |  |        .       |  |     .      |  |Unsol 
     |  |    .     | D|        .       | D|     .      |  |Data 
     |  |    .     | a| DM Msg holding | a|     .      |  |Trans 
     | i| Snd_Ctrl | t|SCSI Dataout PDU| t|Ctrl_Notify | i| 
     | S|--------->| a|--------------->| a|----------->| S| 
     | C|          | m|                | m|            | C|Buf 
     | S|          | o|                | o|            | S|Avail 
     | I|          | v|                | v|  Get_Data  | I|(R2T)  
     |  |          | e|----------------| e|<-----------|  |<---- 
     | L|          | r||Solicited Data | r|            | L|  . 
     | a|          |  ||  Transfer     |  |            | a|  . 
     | y|          | L|--------------->| L|      .     | y|Buf 
     | e|          | a|        .       | a|      .     | e|Avail 
     | r|          | y|        .       | y|  Get_Data  | r|(R2T) 
     |  |          | e|----------------| e|<-----------|  |<---- 
     |  |          | r||Solicited Data | r|            |  | 
     |  |          |  ||   Transfer    |  |            |  | 
     |  |          |  |--------------->|  |Data_Cmp_Nfy|  |Data 
     |  |          |  |                |  |----------->|  |Trans 
     |  |          |  |                |  |            |  |Compl  
     |  |          |  | DM Msg holding |  |            |  | 
SCSI |  |          |  |SCSI Resp PDU & |  |            |  |SCSI 
Resp |  |Ctrl_Ntfy |  |  Sense Data    |  |  Snd_Ctrl  |  |Resp 
<----|  |<---------|  |<---------------|  |<-----------|  |<---- 
     |  |          |  |                |  |            |  | 
 

Figure 9 A SCSI Write data transfer 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 61] 
 

     <-----Initiator----->                <-------Target-------> 
 
     |  |          |  |                |  |            |  | 
SCSI |  |          |  | DM Msg holding |  |            |  |SCSI 
Cmd  |  | Snd_Ctrl |  |  SCSI Cmd PDU  |  |Ctrl_Notify |  |Cmd 
---->|  |--------->|  |--------------->|  |----------->|  |---> 
     |  |          |  |                |  |            |  | 
     |  |          | D|    SCSI Read   | D|            |  |Buf 
     |  |          | a|  Data Transfer | a|  Put_Data  |  |Avail 
     | i|          | t|<---------------| t|<-----------| i|<---- 
     | S|          | a|        .       | a|     .      | S|  . 
     | C|          | m|        .       | m|     .      | C|  . 
     | S|          | o|        .       | o|     .      | S|  . 
     | I|          | v|    SCSI Read   | v|     .      | I|Buf 
     |  |          | e|  Data Transfer | e|  Put_Data  |  |Avail 
     | L|          | r|<---------------| r|<-----------| L|<---- 
     | a|          |  |                |  |            | a| 
     | y|          | L|                | L|            | y| 
     | e|          | a|                | a|Data_Cmp_Nfy| e|Data 
     | r|          | y|                | y|----------->| r|Trans 
     |  |          | e|                | e|            |  |Compl  
     |  |          | r| DM Msg holding | r|            |  | 
SCSI |  |          |  |SCSI Resp PDU & |  |            |  |SCSI 
Resp |  |Ctrl_Ntfy |  |  Sense Data    |  |  Snd_Ctrl  |  |Resp 
<----|  |<---------|  |<---------------|  |<-----------|  |<---- 
     |  |          |  |                |  |            |  | 
 

Figure 10 A SCSI Read data transfer 

 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 62] 
 

     <-----Initiator----->                <-------Target-------> 
 
     |  |          |  |                |  |            |  | 
SCSI |  |          |  | DM Msg holding |  |            |  |SCSI 
Cmd  |  | Snd_Ctrl |  |  SCSI Cmd PDU  |  |Ctrl_Notify |  |Cmd 
---->|  |--------->|  |--------------->|  |----------->|  |----> 
     |  |          |  |                |  |            |  | 
     |  |          | D|    SCSI Read   | D|  Put_Data  |  |Buf 
     |  |          | a|  Data Transfer | a|Data_in.A=1 |  |Avail  
     | i|          | t|<---------------| t|<-----------| i|<---- 
     | S|          | a|        .       | a|     .      | S|  . 
     | C|          | m|        .       | m|Data_ACK_Nfy| C|  . 
     | S|          | o|                | o|----------->| S|  . 
     | I|          | v|                | v|     .      | I|  
     |  |          | e|                | e|     .      |  | 
     | L|          | r|                | r|            | L| 
     | a|          |  |                |  |            | a| 
     | y|          | L|                | L|            | y| 
     | e|          | a|                | a|            | e|Data 
     | r|          | y|                | y|            | r|Trans 
     |  |          | e|                | e|            |  |Compl  
     |  |          | r| DM Msg holding | r|            |  | 
SCSI |  |          |  |SCSI Resp PDU & |  |            |  |SCSI 
Resp |  |Ctrl_Ntfy |  |  Sense Data    |  |  Snd_Ctrl  |  |Resp 
<----|  |<---------|  |<---------------|  |<-----------|  |<---- 
     |  |          |  |                |  |            |  | 
 

Figure 11 A SCSI Read data acknowledgement 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 63] 
 

     <-----Initiator----->                <-------Target-------> 
 
     |  |          |  |                |  |            |  | 
SCSI |  |          |  | DM Msg holding |  |            |  |SCSI 
Cmd  |  | Snd_Ctrl |  |  SCSI Cmd PDU  |  |Ctrl_Notify |  |Cmd 
---->|  |--------->|  |--------------->|  |----------->|  |----> 
     |  |          |  |                |  |            |  | 
     |  |          | D|    SCSI Read   | D|            |  |Buf 
     |  |          | a|  Data Transfer | a|  Put_Data  |  |Avail  
     | i|          | t|<---------------| t|<-----------| i|<---- 
     | S|          | a|        .       | a|     .      | S|  . 
Abort| C|          | m| DM Msg holding | m|     .      | C|Abort 
Task | S| Snd_Ctrl | o|  Abort TMF Req | o|Ctrl_Notify | S|Task 
---->| I|--------->| v|--------------->| v|----------->| I|----> 
     |  |          | e|       .        | e|     .      |  |  
Abort| L|          | r|  DM Msg holding| r|            | L| . 
Done | a|Ctrl_Ntfy |  |   Abort TMF Res|  | Snd_Ctrl   |  |Abted 
<----| y|<---------| L|<---------------| L|<-----------| y|<---- 
     | e|          | a|                | a|            | e| 
     | r|          | y|                | y|            | r| 
     |  |          | e|                | e|            |  |  
     |  |          | r|                | r|            |  | 
     |  |          |  |                |  |            |  |  
     |  |Dal_Tk_Res|  |                |  |Dal_Tk_Res  |  |  
     |  |--------->|  |                |  |<-----------|  |  
     |  |          |  |                |  |            |  | 

 

Figure 12  Task resource cleanup on abort 

 

 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 64] 
 

17 Full Copyright Statement 

Copyright (C) The IETF Trust (2006).  This document is 
subject to the rights, licenses and restrictions contained in 
BCP 78, and except as set forth therein, the authors retain 
all their rights.  

This document and the information contained herein are 
provided on an "AS IS" basis and THE CONTRIBUTOR, THE 
ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), 
THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE 
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT 
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION 
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES 
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 



Internet-Draft         DA        18 October 2006 
 

 
 
Chadalapaka, et al.    Expires April, 2007        [Page 65] 
 

18 Intellectual Property Statement  

The IETF takes no position regarding the validity or scope of    
any Intellectual Property Rights or other rights that might 
be claimed to pertain to the implementation or use of the 
technology described in this document or the extent to which 
any license under such rights might or might not be 
available; nor does it represent that it has made any 
independent effort to identify any such rights.  Information 
on the procedures with respect to rights in RFC documents can 
be found in BCP 78 and BCP 79.  

Copies of IPR disclosures made to the IETF Secretariat and 
any assurances of licenses to be made available, or the 
result of an attempt made to obtain a general license or 
permission for the use of such proprietary rights by 
implementers or users of this specification can be obtained 
from the IETF on-line IPR repository at 
http://www.ietf.org/ipr.  

The IETF invites any interested party to bring to its 
attention any copyrights, patents or patent applications, or 
other proprietary rights that may cover technology that may 
be required to implement this standard.  Please address the 
information to the IETF at ietf-ipr@ietf.org.  

  


