
RMCAT WG I. Johansson
Internet-Draft Z. Sarker
Intended status: Experimental Ericsson AB
Expires: January 7, 2016 July 6, 2015

 Self-Clocked Rate Adaptation for Multimedia
 draft-ietf-rmcat-scream-cc-01

Abstract

 This memo describes a rate adaptation algorithm for conversational
 video services. The solution conforms to the packet conservation
 principle and uses a hybrid loss and delay based congestion control
 algorithm. The algorithm is evaluated over both simulated Internet
 bottleneck scenarios as well as in a LTE (Long Term Evolution) system
 simulator and is shown to achieve both low latency and high video
 throughput in these scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Johansson & Sarker Expires January 7, 2016 [Page 1]

Internet-Draft SCReAM July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Wireless (LTE) access properties 3
 2. Terminology . 3
 3. Overview of SCReAM Algorithm 4
 3.1. Congestion Control 4
 3.2. Transmission Scheduling 5
 3.3. Media Rate Control 5
 4. Detailed Description of SCReAM 5
 4.1. SCReAM Sender . 5
 4.1.1. Constants and Parameter values 7
 4.1.2. Network congestion control 11
 4.1.2.1. Congestion window update 12
 4.1.2.2. Transmission scheduling 16
 4.1.3. Video rate control 17
 4.2. SCReAM Receiver . 19
 5. Feedback Message . 20
 6. Discussion . 22
 7. Conclusion . 22
 8. Open issues . 22
 9. Implementation status . 23
 9.1. OpenWebRTC . 23
 9.2. A C++ Implementation of SCReAM 24
 10. Acknowledgements . 24
 11. IANA Considerations . 25
 12. Security Considerations 25
 13. Change history . 25
 14. References . 25
 14.1. Normative References 25
 14.2. Informative References 26
 Appendix A. Additional features 27
 A.1. Packet pacing . 27
 A.2. Stream prioritization 28
 A.3. Q-bit semantics (source quench) 30
 A.4. Frame skipping . 31
 Authors’ Addresses . 32

1. Introduction

 Congestion in the internet is a reality and applications that are
 deployed in the internet must have congestion control schemes in
 place not only for the robustness of the service that it provides but
 also to ensure the function of the currently deployed internet. As
 the interactive realtime communication imposes a great deal of

Johansson & Sarker Expires January 7, 2016 [Page 2]

Internet-Draft SCReAM July 2015

 requirements on the transport, a robust, efficient rate adaptation
 for all access types is considered as an important part of
 interactive realtime communications as the transmission channel
 bandwidth may vary over time. Wireless access such as LTE, which is
 an integral part of the current internet, increases the importance of
 rate adaptation as the channel bandwidth of a default LTE bearer
 [QoS-3GPP] can change considerably in a very short time frame. Thus
 a rate adaptation solution for interactive realtime media, such as
 WebRTC, must be both quick and be able to operate over a large span
 in available channel bandwidth. This memo describes a solution,named
 SCReAM, that is based on the self-clocking principle of TCP and uses
 techniques similar to what is used in a new delay based rate
 adaptation algorithm, LEDBAT [RFC6817]. Because neither TCP nor
 LEDBAT was designed for interactive realtime media, a few extra
 features are needed to make the concept work well within this
 context. This memo describes these extra features.

1.1. Wireless (LTE) access properties

 [I-D.ietf-rmcat-wireless-tests] introduces the complications that can
 be observed in wireless environments. Wireless access such as LTE
 can typically not guarantee a given bandwidth, this is true
 especially for default bearers. The network throughput may vary
 considerably for instance in cases where the wireless terminal is
 moving around.

 Unlike wireline bottlenecks with large statistical multiplexing it is
 not possible to try to maintain a given bitrate when congestion is
 detected with the hope that other flows will yield, this because
 there are generally few other flows competing for the same
 bottleneck. Each user gets its own variable throughput bottleneck,
 where the throughput depends on factors like channel quality, network
 load and historical throughput. The bottom line is, if the
 throughput drops, the sender has no other option than to reduce the
 bitrate. In addition, the grace time, i.e. allowed reaction time
 from the time that the congestion is detected until a reaction in
 terms of a rate reduction is effected, is generally very short, in
 the order of one RTT (Round Trip Time).

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [RFC2119]

Johansson & Sarker Expires January 7, 2016 [Page 3]

Internet-Draft SCReAM July 2015

3. Overview of SCReAM Algorithm

 The core SCReAM algorithm has similarities to concepts like self-
 clocking used in TFWC [TFWC] and follows packet conservation
 principles. The packet conservation principle is described as an
 important key-factor behind the protection of networks from
 congestion [FACK].

 The packet conservation principle is realized by including an
 indication of the highest received sequence number in the feedback,
 see Section 5, from the receiver back to the sender, the sender keeps
 a list of transmitted packets and their respective sizes. This
 information is then used to determine how many bytes can be
 transmitted. A congestion window puts an upper limit on how many
 bytes can be in flight, i.e. transmitted but not yet acknowledged.
 The congestion window is determined in a way similar to LEDBAT
 [RFC6817]. This ensures that the e2e latency is kept low. The basic
 functionality is quite simple, there are however a few steps to take
 to make the concept work with conversational media. These will be
 briefly described in sections Section 3.1 to Section 3.3.

 The rate adaptation solution constitutes three parts- congestion
 control, transmission scheduling and media rate adaptation. All
 these three parts reside at the sender side. The receiver side
 algorithm is very simple in comparison as it only generates
 acknowledgements to received RTP packets.

3.1. Congestion Control

 The congestion control sets an upper limit on how much data can be in
 the network (bytes in flight); this limit is called CWND (congestion
 window) and is used in the transmission scheduling.

 The SCReAM congestion control method, uses LEDBAT [RFC6817] to
 measure the OWD (one way delay). The SCReAM sender calculates the
 congestion window based on the feedback from SCReAM receiver. The
 congestion window is allowed to increase if the OWD is below a
 predefined target, otherwise the congestion window decreases. The
 delay target is typically set to 50-100ms. This ensures that the OWD
 is kept low on the average. The reaction to loss events is similar
 to that of loss based TCP, i.e. an instant reduction of CWND.

 LEDBAT is designed with file transfers as main use case which means
 that the algorithm must be modified somewhat to work with rate-
 limited sources such as video. The modifications are

 o Congestion window validation techniques. These are similar in
 action as the method described in [I-D.ietf-tcpm-newcwv].

Johansson & Sarker Expires January 7, 2016 [Page 4]

Internet-Draft SCReAM July 2015

 o Fast start for bitrate increase. It makes the video bitrate ramp-
 up within 5 to 10 seconds. The behavior is similar to TCP
 slowstart. The fast start is exited when congestion is detected.
 The fast start state can be resumed if the congestion level is
 low, this to enable a reasonably quick rate increase in case link
 throughput increases.

 o Adaptive delay target. This helps the congestion control to
 compete with FTP traffic to some degree.

3.2. Transmission Scheduling

 Transmission scheduling limits the output of data, given by the
 relation between the number of bytes in flight and the congestion
 window similar to TCP. Packet pacing is used to mitigate issues with
 coalescing that may cause increased jitter and/or packet loss in the
 media traffic.

3.3. Media Rate Control

 The media rate control serves to adjust the media bitrate to ramp up
 quickly enough to get a fair share of the system resources when link
 throughput increases.

 The reaction to reduced throughput must be prompt in order to avoid
 getting too much data queued up in the RTP packet queues. The media
 bitrate is decreased if the RTP queue size exceeds a threshold.

 In cases where the sender frame queues increase rapidly such as the
 case of a RAT (Radio Access Type) handover it may be necessary to
 implement additional actions, such as discarding of encoded video
 frames or frame skipping in order to ensure that the RTP queues are
 drained quickly. Frame skipping means that the frame rate is
 temporarily reduced. Discarding of old video frames is a more
 efficient way to reduce media latency than frame skipping but it
 comes with a requirement to repair codec state, frame skipping is
 thus to prefer as a first remedy. Frame skipping is described as an
 optional to implement feature in this specification.

4. Detailed Description of SCReAM

4.1. SCReAM Sender

 This section describes the sender side algorithm in more detail. It
 is split between the network congestion control and the video rate
 adaptation.

Johansson & Sarker Expires January 7, 2016 [Page 5]

Internet-Draft SCReAM July 2015

 Figure 1 shows the functional overview of a SCReAM sender. The RTP
 application interaction with congestion control is described in
 [I-D.ietf-rmcat-app-interaction]. Here we use a more decomposed
 version of the implementation model in the sense that the RTP packets
 may be queued up in the sender, the transmission of these RTP packets
 is controlled by a transmission scheduler. A SCReAM sender
 implements rate control and a queue for each media type or source,
 where RTP packets containing encoded media frames are temporarily
 stored for transmission, the figure shows the details for when two
 video sources (a.k.a streams) are used.

 ---------------------------- -----------------------------
 | Video encoder | | Video encoder |
 ---------------------------- -----------------------------
 ^ | ^ ^ | ^
 (1)| (2)| (3)| (1)| (2)| (3)|
 | RTP | | RTP |
 | V | | V |
 | ------------- | | ------------- |
 ----------- | |-- ----------- | |--
 | Rate | (4) | Queue | | Rate | (4) | Queue |
 | control |<----| | | control |<----| |
 | | |RTP packets| | | |RTP packets|
 ----------- | | ----------- | |
 ------------- -------------
 | |
 --------------- --------------
 (5)| |(5)
 RTP RTP
 | |
 v v
 -------------- ----------------
 | Network | (8) | Transmission |
 | congestion |<-------->| scheduler |
 | control | | |
 -------------- ----------------
 ^ |
 | (7) |(6)
 ---------RTCP---------- RTP
 | |
 | v

 | UDP |
 | socket |

 Figure 1: SCReAM sender functional view

Johansson & Sarker Expires January 7, 2016 [Page 6]

Internet-Draft SCReAM July 2015

 Video frames are encoded and forwarded to the queue (2). The media
 rate adaptation adapts to the size of the RTP queue and controls the
 video bitrate (1). The RTP packets are picked from each queue based
 on some defined priority order or simply in a round robin fashion
 (5). A transmission scheduler takes care of the transmission of RTP
 packets, to be written to the UDP socket (6). In the general case
 all media must go through the transmission scheduler and is allowed
 to be transmitted if the number of bytes in flight is less than the
 congestion window. Audio frames can however be allowed to be
 transmitted immediately as audio is typically low bitrate and thus
 contributes little to congestion, this is something that is left as
 an implementation choice. RTCP packets are received (7) and the
 information about bytes in flight and congestion window is exchanged
 between the network congestion control and the transmission scheduler
 (8).

4.1.1. Constants and Parameter values

 A set of constants are defined in Table 1, state variables are
 defined in Table 2. And finally, local variables are described in
 Table 3.

 An init value [] indicates an empty array.

Johansson & Sarker Expires January 7, 2016 [Page 7]

Internet-Draft SCReAM July 2015

 +-------------------------------+------------------------+----------+
 | Constant | Explanation | Value |
 +-------------------------------+------------------------+----------+
OWD_TARGET_LO	Min OWD target	0.1s
OWD_TARGET_HI	Max OWD target	0.4s
MAX_BYTES_IN_FLIGHT_HEAD_ROOM	Headroom for	1.1
	limitation of CWND	
GAIN	Gain factor for	1.0
	congestion window	
	adjustment	
BETA	CWND scale factor due	0.6
	to loss event	
BETA_R	Target rate scale	0.8
	factor due to loss	
	event	
BYTES_IN_FLIGHT_SLACK	Additional slack [%]	10%
	to the congestion	
	window	
RATE_ADJUST_INTERVAL	Interval between video	0.1s
	bitrate adjustments	
FRAME_PERIOD	Video coder frame	
	period [s]	
TARGET_BITRATE_MIN	Min target_bitrate	
	[bps]	
TARGET_BITRATE_MAX	Max target_bitrate	
	[bps]	
RAMP_UP_TIME	Timespan [s] from	10s
	lowest to highest	
	bitrate	
PRE_CONGESTION_GUARD	Guard factor against	0.0..0.2
	early congestion	
	onset. A higher value	
	gives less jitter	
	possibly at the	
	expense of a lower	
	video bitrate.	
TX_QUEUE_SIZE_FACTOR	Guard factor against	0.0..2.0
	RTP queue buildup	
 +-------------------------------+------------------------+----------+

 Table 1: Constants

Johansson & Sarker Expires January 7, 2016 [Page 8]

Internet-Draft SCReAM July 2015

 +-------------------------+--------------------+--------------------+
 | Variable | Explanation | Init value |
 +-------------------------+--------------------+--------------------+
owd_target	OWD target	OWD_TARGET_LO
owd_fraction_avg	EWMA filtered	0.0
	owd_fraction	
owd_fraction_hist	Vector of the last	[]
	20 owd_fraction	
owd_trend	OWD trend,	0.0
	indicates	
	incipient	
	congestion	
owd_trend_mem	Low pass filtered	0.0
	version of	
	owd_trend	
owd_norm_hist	Vector of the last	[]
	100 owd_norm	
mss	Maximum segment	1000
	size = Max RTP	
	packet size [byte]	
min_cwnd	Minimum congestion	2*MSS
	window [byte]	
in_fast_start	True if in fast	true
	start state	
cwnd	Congestion window	min_cwnd
	[byte]	
cwnd_i	Congestion window	1
	inflection point	
bytes_newly_acked	The number of	0
	bytes that was	
	acknowledged with	
	the last received	
	acknowledgement	
	i.e. bytes	
	acknowledged since	
	the last CWND	
	update [byte].	
	Reset after a CWND	
	update	
send_wnd	Upper limit of how	0
	many bytes that	
	can be transmitted	
	[byte]. Updated	
	when CWND is	
	updated and when	
	RTP packet is	
	transmitted	
t_pace	Approximate	0.001

Johansson & Sarker Expires January 7, 2016 [Page 9]

Internet-Draft SCReAM July 2015

	estimate of inter-	
	packet	
	transmission	
	interval [s],	
	updated when RTP	
	packet transmitted	
age_vec	A vector of the	[]
	last 20 RTP packet	
	queue delay	
	samples	
frame_skip_intensity	Indicates the	0.0
	intensity of the	
	frame skips	
since_last_frame_skip	Number of video	0
	frames since the	
	last skip	
consecutive_frame_skips	Number of	0
	consecutive frame	
	skips	
target_bitrate	Video target	TARGET_BITRATE_MIN
	bitrate [bps]	
target_bitrate_i	Video target	1
	bitrate inflection	
	point i.e. the	
	last known highest	
	target_bitrate	
	during fast start.	
	Used to limit	
	bitrate increase	
	close to the last	
	know congestion	
	point	
rate_transmit	Measured transmit	0.0
	bitrate [bps]	
rate_acked	Measured	0.0
	throughput based	
	on received	
	acknowledgements	
	[bps]	
rate_rtp	Measured bitrate	0.0
	from the media	
	encoder [bps]	
rate_rtp_median	Median value of	0.0
	rate_rtp, computed	
	over more than 10s	
	[bps]	
s_rtt	Smoothed RTT [s],	0.0
	computed similar	

Johansson & Sarker Expires January 7, 2016 [Page 10]

Internet-Draft SCReAM July 2015

	to method depicted	
	in [RFC6298]	
rtp_queue_size	Size of RTP	0
	packets in queue	
	[bits]	
rtp_size	Size of the last	0
	transmitted RTP	
	packets [byte]	
frame_skip	Skip encoding of	false
	video frame if	
	true	
 +-------------------------+--------------------+--------------------+

 Table 2: State variables

 +------------------+--+
 | Variable | Explanation |
 +------------------+--+
owd	OWD = One way delay with base delay subtracted
	[s]. This is an estimate of the network
	queueing delay.
owd_fraction	OWD as a fraction of the OWD target
owd_norm	OWD normalized to OWD_TARGET_LO
owd_norm_mean	Average OWD norm over the last 100 samples
owd_norm_mean_sh	Average OWD norm over the last 20 samples
owd_norm_var	OWD norm variance over the last 100 samples
off_target	Relation between OWD and OWD target
scl_i	A general scalefactor that is applied to the
	CWND or target_bitrate increase
x_cwnd	Additional increase of CWND, used when
	send_wnd is computed
pace_bitrate	The allowed RTP packet transmission rate, used
	in the computation of t_pace [bps]
age_avg	Average RTP queue delay [s]
increment	Allowed target_bitrate increase
current_rate	Max of rate_transmit and rate_acked
 +------------------+--+

 Table 3: Local temporary variables

4.1.2. Network congestion control

 This section explains the network congestion control, it contains two
 main functions

 o Computation of congestion window at the sender: Gives an upper
 limit to the number of bytes in flight i.e. how many bytes that
 have been transmitted but not yet acknowledged.

Johansson & Sarker Expires January 7, 2016 [Page 11]

Internet-Draft SCReAM July 2015

 o Transmission scheduling at the sender: RTP packets are transmitted
 if allowed by the relation between the number of bytes in flight
 and the congestion window. This is controlled by the send window.

 Unlike TCP, SCReAM is not a byte oriented protocol, rather it is an
 RTP packet oriented protocol. Thus it keeps a list of transmitted
 RTP packets and their respective sending times (wall-clock time).
 The feedback indicates the highest received RTP sequence number and a
 timestamp (wall-clock time) when it was received. In addition, an
 ACK list is included to make it possible to determine lost packets.

4.1.2.1. Congestion window update

 The congestion window is computed from the one way (extra) delay
 estimates (OWD) that are obtained from the send and received
 timestamp of the RTP packets. LEDBAT [RFC6817] explains the details
 of the computation of the OWD. An OWD sample is obtained for each
 received acknowledgement. No smoothing of the OWD samples occur,
 however some smoothing occurs anyway as the computation of the CWND
 is in itself a low pass filter function.

 SCReAM uses the terminology "Bytes in flight (bytes_in_flight)" which
 is computed as the sum of the sizes of the RTP packets ranging from
 the RTP packet most recently transmitted down to but not including
 the acknowledged packet with the highest sequence number. As an
 example: If RTP packet was sequence number SN with transmitted and
 the last ACK indicated SN-5 as the highest received sequence number
 then bytes in flight is computed as the sum of the size of RTP
 packets with sequence number SN-4, SN-3, SN-2, SN-1 and SN.

 CWND is updated differently depending on whether the congestion
 control is in fast start or not and if a loss event is detected. A
 Boolean variable in_fast_start indicates if the congestion is in fast
 start state.

 A loss event indicates one or more lost RTP packets within an RTT.
 This is detected by means of inspection for holes in the sequence
 number space in the acknowledgements with some margin for possible
 packet reordering in the network. As an alternative, a timer for
 loss detection similar to TCP RACK may be used.

 Below is described the actions when an acknowledgement from the
 receiver is received.

 bytes_newly_acked is updated.

 The OWD fraction and an average of it are computed as

Johansson & Sarker Expires January 7, 2016 [Page 12]

Internet-Draft SCReAM July 2015

 owd_fraction = owd/owd_target

 owd_fraction_avg = 0.9* owd_fraction_avg + 0.1* owd_fraction

 The OWD fraction is sampled every 50ms and the last 20 samples are
 stored in a vector (owd_fraction_hist). This vector is used in the
 computation of an OWD trend that gives a value between 0.0 and 1.0
 depending on how close to congestion it is. The OWD trend is
 calculated as follows

 Let R(owd_fraction_hist,K) be the autocorrelation function of
 owd_fraction_hist at lag K. The 1st order prediction coefficient is
 formulated as

 a = R(owd_fraction_hist,1)/R(owd_fraction_hist,0)

 The prediction coefficient a has positive values if OWD shows an
 increasing trend, thus an indication of congestion is obtained before
 the OWD target is reached. The prediction coefficient is further
 multiplied with owd_fraction_avg to reduce sensitivity to increasing
 OWD when OWD is very small. The OWD trend is thus computed as

 owd_trend = max(0.0,min(1.0,a*owd_fraction_avg))

 owd_trend_mem = max(0.99*owd_trend_mem, owd_trend)

 The owd_trend is utilized in the media rate control and to determine
 when to exit slow start. owd_trend_mem is used to enforce a less
 aggressive rate increase after congestion events.

 An off target value is computed as

 off_target = (owd_target - owd) / owd_target

 A temporal variable is scl_i is computed as

 scl_i = max(0.2, min(1.0, (abs(cwnd-cwnd_i)/cwnd_i*4)^2))

 scl_i is used to limit the CWND increase when close to the last known
 max value, before congestion was last detected.

 The congestion window update depends on whether a loss event has
 occurred, and if the congestion control is if fast start or not.

Johansson & Sarker Expires January 7, 2016 [Page 13]

Internet-Draft SCReAM July 2015

 __

 On loss event:

 If a loss event is detected then in_fast_start is set to false and
 CWND is updated according to

 cwnd_i = cwnd

 cwnd = max(min_cwnd,cwnd*BETA)

 otherwise the CWND update continues

 __

 in_fast_start = true:

 in_fast_start is set to false and cwnd_i=cwnd if owd_trend >= 0.2 and
 otherwise CWND is updated according to

 cwnd = cwnd + bytes_newly_acked*scl_i

 __

 in_fast_start = false:

 Values of off_target > 0.0 indicates that the congestion window can
 be increased. This is done according to the equations below.

 gain = GAIN*(1.0 + max(0.0, 1.0 - owd_trend/ 0.2))

 The equation above limits the gain when near congestion is detected

 gain *= scl_i

 This equation limits the gain when CWND is close to its last known
 max value

 cwnd += gain * off_target * bytes_newly_acked * mss / cwnd

 Values of off_target <= 0.0 indicates congestion, CWND is then
 updated according to the equation

 cwnd += GAIN*off_target*bytes_newly_acked*mss/cwnd

 The equations above are very similar to what is specified in
 [RFC6817]. There are however a few differences.

Johansson & Sarker Expires January 7, 2016 [Page 14]

Internet-Draft SCReAM July 2015

 o [RFC6817] specifies a constant GAIN, this specification however
 limits the gain when CWND is increased dependent on near
 congestion state and the relation to the last known max CWND
 value.

 o [RFC6817] specifies that the CWND increased is limited by an
 additional function controlled by a constant ALLOWED_INCREASE.
 This additional limitation is removed in this specification.

 __

 A number of final steps in the congestion window update procedure are
 outlined below

 __

 Resume fast start:

 Fast start can be resumed in order to speed up the bitrate increase
 in case congestion abates. The condition to resume fast start
 (in_fast_start = true) is that owd_trend is less than 0.2 for 1.0
 seconds or more.

 __

 Competing flows compensation, adjustment of owd_target:

 Competing flows compensation is needed to avoid that flows congestion
 controlled by SCReAM are starved out by flows that are more
 aggressive in their nature. The owd_target is adjusted according to
 the owd_norm_mean_sh whenever owd_norm_var is below a given value.
 The condition to update owd_target is fulfilled if owd_norm_var <
 0.16 (indicating that the standard deviation is less than 0.4).
 owd_target is then update as:

 owd_target = min(OWD_TARGET_HI,max(OWD_TARGET_LO, owd_norm_mean_sh*
 OWD_TARGET_LO*1.1))

 __

 Final CWND adjustment step:

 The congestion window is limited by the maximum number of bytes in
 flight over the last 1.0 seconds according to

 cwnd = min(cwnd, max_bytes_in_flight*MAX_BYTES_IN_FLIGHT_HEAD_ROOM)

Johansson & Sarker Expires January 7, 2016 [Page 15]

Internet-Draft SCReAM July 2015

 This avoids possible over-estimation of the throughput after for
 example, idle periods.

 Finally cwnd is set to ensure that it is at least min_cwnd

 cwnd = max(cwnd, MIN_CWND)

4.1.2.2. Transmission scheduling

 The principle is to allow packet transmission of an RTP packet only
 if the number of bytes in flight is less than the congestion window.
 There are however two reasons why this strict rule will not work
 optimally:

 o Bitrate variations: The video frame size is always varying to a
 larger or smaller extent, a strict rule as the one given above
 will have the effect that the video bitrate have difficulties to
 increase as the congestion window puts a too hard restriction on
 the video frame size variation, this further can lead to
 occasional queuing of RTP packets in the RTP packet queue that
 will prevent bitrate increase because of the increased RTP queue
 size.

 o Reverse (feedback) path congestion: Especially in transport over
 buffer-bloated networks, the one way delay in the reverse
 direction may jump due to congestion. The effect of this is that
 the acknowledgements are delayed with the result that the self-
 clocking is temporarily halted, even though the forward path is
 not congested.

 Packets are transmitted at a pace given by the send window, computed
 below

 The send window is computed differently depending on OWD and its
 relation to the OWD target.

 o If owd > owd_target:
 The send window is computed as
 send_wnd = cwnd-bytes_in_flight
 This enforces a strict rule that helps to prevent further queue
 buildup.

 o If owd <= owd_target:
 A helper variable
 x_cwnd=1.0+BYTES_IN_FLIGHT_SLACK*max(0.0,
 min(1.0,1.0-owd_trend/0.5))/100.0
 is computed. The send window is computed as
 send_wnd = max(cwnd*x_cwnd, cwnd+mss)-bytes_in_flight

Johansson & Sarker Expires January 7, 2016 [Page 16]

Internet-Draft SCReAM July 2015

 This gives a slack that reduces as congestion increases,
 BYTES_IN_FLIGHT_SLACK is a maximum allowed slack in percent. A
 large value increases the robustness to bitrate variations in the
 source and congested feedback channel issues. The possible
 drawback is increased delay or packet loss when forward path
 congestion occur.

4.1.3. Video rate control

 The video rate control is operated based on the size of the RTP
 packet send queue and observed loss events. In addition, owd_trend
 is also considered in the rate control, this to reduce the amount of
 induced network jitter.

 A variable target_bitrate is adjusted depending on the congestion
 state. The target bitrate can vary between a minimum value
 (target_bitrate_min) and a maximum value (target_bitrate_max).

 For the overall bitrate adjustment, two network throughput estimates
 are computed :

 o rate_transmit: The measured transmit bitrate

 o rate_acked: The ACKed bitrate, i.e. the volume of ACKed bits per
 time unit.

 Both estimates are updated every 200ms.

 The current throughput current_rate is computed as the maximum value
 of rate_transmit and rate_acked. The rationale behind the use of
 rate_acked in addition to rate_transmit is that rate_transmit is
 affected also by the amount of data that is available to transmit,
 thus a lack of data to transmit can be seen as reduced throughput
 that may itself cause an unnecessary rate reduction. To overcome
 this shortcoming; rate_acked is used as well. This gives a more
 stable throughput estimate.

 The bitrate is updated at regular intervals, given by
 RATE_ADJUST_INTERVAL and differently depending the fast start state

 The rate change behavior depends on whether a loss event has
 occurred, and if the congestion control is if fast start or not.

Johansson & Sarker Expires January 7, 2016 [Page 17]

Internet-Draft SCReAM July 2015

 __

 On loss event:

 First of all the target_bitrate is updated if a new loss event was
 indicated and the rate change procedure is exited.

 target_bitrate_i = target_bitrate

 target_bitrate = max(BETA_R* target_bitrate, TARGET_BITRATE_MIN)

 If no loss event was indicated then the rate change procedure
 continues.

 __

 in_fast_start = true:

 An allowed increment is computed based on the congestion level and
 the relation to target_bitrate_i

 scl_i = (target_bitrate - target_bitrate_i)/ target_bitrate_i

 increment = TARGET_BITRATE_MAX* RATE_ADJUST_INTERVAL/RAMP_UP_TIME*
 (1.0- min(1.0, owd_trend/0.1))

 increment *= max(0.2, min(1.0, (scl_i*4)^2))

 target_bitrate += increment

 target_bitrate is reduced further if congestion is detected.

 target_bitrate *= (1.0- PRE_CONGESTION_GUARD*owd_trend)

 __

 in_fast_start = false:

 target_bitrate_i is updated to the current value of target_bitrate if
 in_fast_start was true the last time the bitrate was updated.

 A pre-congestion indicator is computed as

 pre_congestion = min(1.0, max(0.0, owd_fraction_avg-0.3)/0.7)

 pre_congestion += owd_trend

 The target bitrate is computed as

Johansson & Sarker Expires January 7, 2016 [Page 18]

Internet-Draft SCReAM July 2015

 target_bitrate=current_rate*(1.0-
 PRE_CONGESTION_GUARD*pre_congestion)-TX_QUEUE_SIZE_FACTOR
 *rtp_queue_size

 __

 Final step:

 As a final step, the target bitrate is limited such that it is kept
 within reasonable bounds.

 In cases where input stimuli to the media encoder is static, for
 instance in "talking head" scenarios, the target bitrate is not
 always fully utilized. This may cause undesirable oscillations in
 the target bitrate in the cases where the link throughput is limited
 and the media coder input stimuli changes between static and varying.

 To overcome this issue, the target bitrate is capped to be less than
 a given multiplier of a median value of the history of media coder
 output bitrates. A rate_rtp_limit is computed as

 rate_rtp_limit = max(br, max(rate_rtp,rtp_rate_median))

 A multiplier is applied to rate_rtp_limit, depending on congestion
 history

 rate_rtp_limit *= (2.0-1.0*owd_trend_mem)

 The target_bitrate is then limited by rate_rtp_limit

 target_bitrate = min(target_bitrate, rate_rtp_limit)

 Finally the target_bitrate is enforced to be within the defined min
 and max values

 target_bitrate =
 min(TARGET_BITRATE_MAX,max(TARGET_BITRATE_MIN,target_bitrate))

4.2. SCReAM Receiver

 The SCReAM receiver is very simple in its implementation. The task
 is to feedback acknowledgements of received packets. For that
 purpose a set of state variables are needed, these are explained in
 Table 4.

 One set of state variables are maintained per stream.

Johansson & Sarker Expires January 7, 2016 [Page 19]

Internet-Draft SCReAM July 2015

 +-----------------------------+-----------------------------+-------+
 | Variable | Explanation | Init |
 | | | value |
 +-----------------------------+-----------------------------+-------+
rx_timestamp	The wall clock timestamp	0
	when the latest RTP packet	
	was received	
highest_rtp_sequence_number	The highest received	0
	sequence number	
ack_vector	A 16 bit vector that	0
	indicates received RTP	
	packets with a sequence	
	number lower than	
	highest_rtp_sequence_number	
n_loss	An 8 bit counter for the	0
	number of lost RTP packets,	
	separate counters are	
	maintained for each SSRC	
n_ECN	An 8 bit counter for the	0
	number of ECN-CE marked RTP	
	packets, separate counters	
	are maintained for each	
	SSRC	
pending_feedback	Indicates that an RTP	false
	packet was received and	
	that an RTCP packet can be	
	generated when RTCP timing	
	rules permit	
last_transmit_t	Last time an RTCP packet	-1.0
	was transmitted, this is	
	used to ensure that RTCP	
	feedback is generated	
	fairly for all streams.	
 +-----------------------------+-----------------------------+-------+

 Table 4: State variables

 Upon reception of an RTP packet, the state variables in Table 4
 should be updated and the RTCP processing function should be
 notified. An RTCP packet is later generated based on the state
 variables, how often this is done depends on the RTCP bandwidth.

5. Feedback Message

 The feedback is over RTCP [RFC3550] and is based on [RFC4585]. It is
 implemented as a transport layer feedback message (RTPFB), see
 proposed example in Figure 2. The feedback control information part
 (FCI) consists of the following elements.

Johansson & Sarker Expires January 7, 2016 [Page 20]

Internet-Draft SCReAM July 2015

 o Highest received RTP sequence number: The highest received RTP
 sequence number for the given SSRC

 o n_lost: Ackumulated number of lost RTP packets for the given SSRC

 o Timestamp: A timestamp value indicating when the last packet was
 received which makes it possible to compute the one way (extra)
 delay (OWD).

 o n_ECN: Ackumulated number of ECN-CE marked RTP packets for the
 given SSRC

 o Source quench bit (Q): Makes it possible to request the sender to
 reduce its congestion window. This is useful if WebRTC media is
 received from many hosts and it becomes necessary to balance the
 bitrates between the streams.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| FMT | PT | length |
 +-+
 | SSRC of packet sender |
 +-+
 | SSRC of media source |
 +-+
 | Highest recv. seq. nr. (16b) | n_lost | n_ECN |
 +-+
 | Timestamp (32bits) |
 +-+
 |Q| Reserved for future use |
 +-+

 Figure 2: Transport layer feedback message

 To make the feedback as frequent as possible, the feedback packets
 are transmitted as reduced size RTCP according to [RFC5506].

 The timestamp clock time is recommended to be set to a fixed value
 such as 1000Hz, defined in this specification. The n_lost and n_ECN
 makes it possible to take necessary actions on the detection of lost
 and ECN marked packets.

 Section 4 describes the main algorithm details and how the feedback
 is used.

Johansson & Sarker Expires January 7, 2016 [Page 21]

Internet-Draft SCReAM July 2015

6. Discussion

 This section covers a few open discussion points

 o RTCP feedback overhead: SCReAM benefits from a relatively frequent
 feedback. Experiments have shown that a feedback rate roughly
 equal to the frame rate gives a stable self-clocking and
 robustness against loss of feedback. With a maximum bitrate of
 1500kbps the RTCP feedback overhead is in the range 10-15kbps with
 reduced size RTCP, including IP and UDP framing, in other words
 the RTCP overhead is quite modest and should not pose a problem in
 the general case. Other solutions may be required in highly
 asymmetrical link capacity cases. Worth notice is that SCReAM can
 work with as low feedback rates as once every 200ms, this however
 comes with a higher sensitivity to loss of feedback and also a
 potential reduction in throughput.

 o AVPF mode: The RTCP feedback is based on AVPF regular mode. The
 SCReAM feedback is transmitted as reduced size RTCP so save
 overhead, it is however required to transmit full compound RTCP at
 regular intervals, this interval can be controlled by trr-int
 depicted in [RFC4585].

 o BETA, CWND scale factor due to loss: The BETA value is recommended
 to be higher than 0.5. The reason behind this is that congestion
 control for multimedia has to deal with a source that is rate
 limited. A file transfer has "unlimited" source bitrate in
 comparison. The outcome is that SCReAM must be a little more
 aggressive than a file transfer in order to not be out competed.

7. Conclusion

 This memo describes a congestion control algorithm for RMCAT that it
 is particularly good at handling the quickly changing condition in
 wireless network such as LTE. The solution conforms to the packet
 conservation principle and leverages on novel congestion control
 algorithms and recent TCP research, together with media bitrate
 determined by sender queuing delay and given delay thresholds. The
 solution has shown potential to meet the goals of high link
 utilization and prompt reaction to congestion. The solution is
 realized with a new RFC4585 transport layer feedback message.

8. Open issues

 A list of open issues.

 o Describe how clock drift compensation is done

Johansson & Sarker Expires January 7, 2016 [Page 22]

Internet-Draft SCReAM July 2015

 o Describe how FEC overhead is accounted for in target_bitrate
 computation

 o Investigate the impact of more sparse RTCP feedback, for instance
 once per RTT

 o Describe ECN behavior

9. Implementation status

 [Editor’s note: Please remove the whole section before publication,
 as well reference to RFC 6982]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC6982].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC6982], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see it".

9.1. OpenWebRTC

 The SCReAM algorithm has been implemented in the OpenWebRTC project
 [OpenWebRTC], an open source WebRTC implementation from Ericsson
 Research. This SCReAM implementation is usable with any WebRTC
 endpoint using OpenWebRTC.

 o Organization : Ericsson Research, Ericsson.

 o Name : OpenWebRTC gst plug-in.

 o Implementation link : The GStreamer plug-in code for SCReAM can be
 found at github repository [SCReAM-Implementation] and is waiting
 to be merged with the master branch of OpebWebRTC repository
 (https://github.com/EricssonResearch/openwebrtc/pull/413).

Johansson & Sarker Expires January 7, 2016 [Page 23]

Internet-Draft SCReAM July 2015

 However, people are encouraged to have look at it and send
 feedback. This wiki
 (https://github.com/EricssonResearch/openwebrtc/wiki) contains
 required information for building and using OpenWebRTC. Note that
 to get all the SCReAM related code and build them, one has to use
 the cerbero fork from DanielLindstrm’ s repository
 (https://github.com/DanielLindstrm/cerbero/tree/scream) instead of
 EricssonResearch fork of cerbero.

 o Coverage : The code implements [I-D.ietf-rmcat-scream-cc]. The
 current implementation has been tuned and tested to adapt video
 stream and does not adapt the audio streams.

 o Implementation experience : The implementation of the algorithm in
 the OpenWebRTC has given great insight into the algorithm itself
 and its interaction with other involved modules such as encoder,
 RTP queue etc. In fact it proves the usability of a self-clocked
 rate adaptation algorithm in the real WebRTC system. The
 implementation experience has led to various algorithm
 improvements both in terms of stability and design. For example,
 improved rate increase behavior and removal of the ACK vector from
 the feedback message.

 o Contact : irc://chat.freenode.net/openwebrtc

9.2. A C++ Implementation of SCReAM

 o Organization : Ericsson Research, Ericsson.

 o Name : SCReAM.

 o Implementation link : A C++ implementation of SCreAM is also
 available which is aimed for doing quick
 experiments[SCReAM-Cplusplus_Implementation]. This repository
 also includes a rudimentary implementation of a simulator. This
 code can be included in other simulators like NS-3.

 o Coverage : The code implements [I-D.ietf-rmcat-scream-cc]

 o Contact : ingemar.s.johansson@ericsson.com,
 zaheduzzaman.sarker@ericsson.com

10. Acknowledgements

 We would like to thank the following persons for their comments,
 questions and support during the work that led to this memo: Markus
 Andersson, Bo Burman, Tomas Frankkila, Frederic Gabin, Laurits Hamm,
 Hans Hannu, Nikolas Hermanns, Stefan Haakansson, Erlendur Karlsson,

Johansson & Sarker Expires January 7, 2016 [Page 24]

Internet-Draft SCReAM July 2015

 Daniel Lindstroem, Mats Nordberg, Jonathan Samuelsson, Rickard
 Sjoeberg, Robert Swain, Magnus Westerlund, Stefan Aalund.

11. IANA Considerations

 A new RFC4585 transport layer feedback message needs to be
 standardized.

12. Security Considerations

 The feedback can be vulnerable to attacks similar to those that can
 affect TCP. It is therefore recommended that the RTCP feedback is at
 least integrity protected.

13. Change history

 A list of changes:

 o WG-00 to WG-01 : Changed the Source code section to Implementation
 status section.

 o -05 to WG-00 : First version of WG doc, moved additional features
 section to Appendix. Added description of prioritization in
 SCReAM. Added description of additional cap on target bitrate

 o -04 to -05 : ACK vector is replaced by a loss counter, PT is
 removed from feedback, references to source code added

 o -03 to -04 : Extensive changes due to review comments, code
 somewhat modified, frame skipping made optional

 o -02 to -03 : Added algorithm description with equations, removed
 pseudo code and simulation results

 o -01 to -02 : Updated GCC simulation results

 o -00 to -01 : Fixed a few bugs in example code

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

Johansson & Sarker Expires January 7, 2016 [Page 25]

Internet-Draft SCReAM July 2015

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, April 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298, June
 2011.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 December 2012.

14.2. Informative References

 [FACK] "Forward Acknowledgement: Refining TCP Congestion
 Control", 2006.

 [I-D.ietf-rmcat-app-interaction]
 Zanaty, M., Singh, V., Nandakumar, S., and Z. Sarker, "RTP
 Application Interaction with Congestion Control", draft-
 ietf-rmcat-app-interaction-01 (work in progress), October
 2014.

 [I-D.ietf-rmcat-scream-cc]
 Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", draft-ietf-rmcat-scream-cc-00 (work in
 progress), May 2015.

 [I-D.ietf-rmcat-wireless-tests]
 Sarker, Z. and I. Johansson, "Evaluation Test Cases for
 Interactive Real-Time Media over Wireless Networks",
 draft-ietf-rmcat-wireless-tests-00 (work in progress),
 June 2015.

 [I-D.ietf-tcpm-newcwv]
 Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
 TCP to support Rate-Limited Traffic", draft-ietf-tcpm-
 newcwv-13 (work in progress), June 2015.

 [OpenWebRTC]
 "Open WebRTC project.", <http://www.openwebrtc.io/>.

Johansson & Sarker Expires January 7, 2016 [Page 26]

Internet-Draft SCReAM July 2015

 [QoS-3GPP]
 TS 23.203, 3GPP., "Policy and charging control
 architecture", June 2011, <http://www.3gpp.org/ftp/specs/
 archive/23_series/23.203/23203-990.zip>.

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982, July
 2013.

 [SCReAM-Cplusplus_Implementation]
 "C++ Implementation of SCReAM",
 <https://github.com/EricssonResearch/scream>.

 [SCReAM-Implementation]
 "SCReAM Implementation",
 <https://github.com/DanielLindstrm/openwebrtc-gst-
 plugins/tree/scream>.

 [TFWC] University College London, "Fairer TCP-Friendly Congestion
 Control Protocol for Multimedia Streaming", December 2007,
 <http://www-dept.cs.ucl.ac.uk/staff/M.Handley/papers/
 tfwc-conext.pdf>.

Appendix A. Additional features

 This section describes additional features. They are not required
 for the basic functionality of SCReAM but can improve performance in
 certain scenarios and topologies.

A.1. Packet pacing

 Packet pacing is used in order to mitigate coalescing i.e. that
 packets are transmitted in bursts.

 Packet pacing is enforced when owd_fraction_avg is greater than 0.1.
 The time interval between consecutive packet transmissions is then
 enforced to equal or higher than t_pace where t_pace is given by the
 equations below.

 pace_bitrate = max (50000, cwnd* 8 / s_rtt)

 t_pace = rtp_size * 8 / pace_bitrate

 rtp_size is the size of the last transmitted RTP packet

Johansson & Sarker Expires January 7, 2016 [Page 27]

Internet-Draft SCReAM July 2015

A.2. Stream prioritization

 As mentioned in Section 4, the prioritization between several streams
 can be managed in many different ways. The most simple way is to
 pick RTP packets from the RTP queues in a round-robin fashion. For
 more advanced scheduling, more advanced algorithms are required.
 Below is described the algorithm that is implemented in the SCReAM
 code Section 9.

 Suppose that we have two video streams, where stream 1 has priority
 1.0 and stream 2 has priority 0.5. Each stream starts with a credit
 of 0 bytes, credit is given to streams that are not given permission
 to transmit at a given scheduling instant, the credit is considered
 in later transmission instants.

 The steps below outline how transmission and scheduling of the two
 RTP streams can evolve. For simplicily it is assumed that the stream
 RTP queues contain 1200 byte packets.

 1. SCReAMs send window allows transmission of 1200 bytes.

 * The stream with the highest priority is picked, in this case
 it is stream 1. Stream 1 thus transmit 1200 bytes.

 * Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
 and thus has a credit of 600 bytes.

 2. SCReAMs send window allows transmission of another 1200 bytes.

 * Stream 2 has too little credit (600 bytes) to transmit a 1200
 byte packet.

 * Stream 1 is therefore picked again as it has the highest
 priority and thus gets to transmit yet another 1200 byte
 packet.

 * Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
 and thus has a credit of 1200 bytes.

 3. SCReAMs send window allows transmission of another 1200bytes.

 * Stream 2 now has enough credit (1200 bytes) to transmit a 1200
 byte packet.

 * Stream 2 thus transmits a 1200 byte packet and in the process
 gets its credit reduced by 1200 byte and is then down to a
 credit of 0.

Johansson & Sarker Expires January 7, 2016 [Page 28]

Internet-Draft SCReAM July 2015

 * Stream 1 gets its credit increased by 1200*1.0/0.5 = 2400 byte
 and thus has a credit of 2400 bytes.

 4. SCReAMs send window allows transmission of another 1200 bytes.

 1. Stream 1 now has the highest credit (2400bytes).

 2. Stream 1 thus transmits a 1200 byte packet and in the process
 gets its credit reduced by 1200 byte and is then down to a
 credit of 1200 bytes.

 3. Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
 and thus has a credit of 600 bytes.

 5. SCReAMs send window allows transmission of another 1200 bytes.

 1. Stream 1 still has the highest credit (1200 bytes).

 2. Stream 1 thus transmits a 1200 byte packet and in the process
 gets its credit reduced by 1200 byte and is then down to a
 credit of 0.

 3. Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
 and thus has a credit of 1200bytes.

 6. SCReAMs send window allows transmission of another 1200 bytes.

 1. Stream 2 now has the highest credit (1200 bytes).

 2. Stream 2 thus transmits a 1200 byte packet and in the process
 gets its credit reduced by 1200 byte and is then down to a
 credit of 0.

 3. Stream 1 gets its credit increased by 1200*1.0/0.5 = 2400
 byte and thus has a credit of 2400 bytes.

 The procedure above repeats it self. In the above example it is
 quite easy to see that stream 1 gets to transmit 2 RTP packets for
 every 1 RTP packets that stream 2 gets to transmit. The very detais
 of the algoritm is found in the C++ code (see Section 9) in the
 module ScreamTx and the functions getPrioritizedStream(..),
 addCredit(..) and subtractCredit(..).

 The above functionality works relatively well and operates with at
 the same speed as RTP packet transmission. There are however cases
 where rate limited video or very large IR frames makes the
 prioritization less efficient. The adjustPriorities(..) function in
 ScreamTx solves this issue on a longer time scale by means of an

Johansson & Sarker Expires January 7, 2016 [Page 29]

Internet-Draft SCReAM July 2015

 additional compensation for deviations in the measured transmit
 bitrate of the individual streams.

 Prioritization mechanisms of sources that may be highly variant is a
 relatively complicated task to achieve. The above outlined algorithm
 manages it to some degree but it is quite likely that the algorithm
 needs to be refined further.

A.3. Q-bit semantics (source quench)

 The Q bit in the feedback is set by a receiver to signal that the
 sender should reduce the bitrate. The sender will in response to
 this reduce the congestion window with the consequence that the video
 bitrate decreases. A typical use case for source quench is when a
 receiver receives streams from sources located at different hosts and
 they all share a common bottleneck, typically it is difficult to
 apply any rate distribution signaling between the sending hosts. The
 solution is then that the receiver sets the Q bit in the feedback to
 the sender that should reduce its rate, if the streams share a common
 bottleneck then the released bandwidth due to the reduction of the
 congestion window for the flow that had the Q bit set in the feedback
 will be grabbed by the other flows that did not have the Q bit set.
 This is ensured by the opportunistic behavior of SCReAM’s congestion
 control. The source quench will have no or little effect if the
 flows do not share the same bottleneck.

 The reduction in congestion window is proportional to the amount of
 SCReAM RTCP feedback with the Q bit set, the below steps outline how
 the sender should react to RTCP feedback with the Q bit set. The
 reduction is done once per RTT. Let :

 o n = Number of received RTCP feedback messages in one RTT

 o n_q = Number of received RTCP feedback messages in one RTT, with Q
 bit set.

 The new congestion window is then expressed as:

 cwnd = max(MIN_CWND, cwnd*(1.0-0.5* n_q /n))

 Note that CWND is adjusted at most once per RTT. Furthermore The
 CWND increase should be inhibited for one RTT if CWND has been
 decreased as a result of Q bits set in the feedback.

 The required intensity of the Q-bit set in the feedback in order to
 achieve a given rate distribution depends on many factors such as
 RTT, video source material etc. The receiver thus need to monitor

Johansson & Sarker Expires January 7, 2016 [Page 30]

Internet-Draft SCReAM July 2015

 the change in the received video bitrate on the different streams and
 adjust the intensity of the Q-bit accordingly.

A.4. Frame skipping

 Frame skipping is a feature that makes it possible to reduce the size
 of the RTP queue in the cases that e.g. the channel throughput drops
 dramatically or even goes below the lowest possible video coder rate.
 Frame skipping is optional to implement as it can sometimes be
 difficult to realize e.g. due to lack of API function to support
 this.

 Frame skipping is controlled by a flag frame_skip which, if set to 1
 dictates that the video coder should skip the next video frame. The
 frame skipping intensity at the current time instant is computed
 according to the steps below

 The queuing delay is sampled every frame period and the last 20
 samples are stored in a vector age_vec

 An average queuing delay is computed as a weighted sum over the
 samples in age_vec. age_avg at the current time instant is computed
 as

 age_avg(n) = SUM age_vec(n-k)*w(k) k = [0..20[

 w(n) are weight factors arranged to give the most recent samples a
 higher weight.

 The change in age_avg is computed as

 age_d = age_avg(n) - age_avg(n-1)

 The frame skipping intensity at the current time instant n is
 computed as

 o If age_d > 0 and age_avg > 2*FRAME_PERIOD:
 frame_skip_intensity = min(1.0, (age_vec(n)-2*FRAME_PERIOD)/(4*
 FRAME_PERIOD)

 o Otherwise frame skip intensity is set to zero

 The skip_frame flag is set depending on three variables

 o frame_skip_intensity

 o since_last_frame_skip, i.e the number of consecutive frames
 without frame skipping

Johansson & Sarker Expires January 7, 2016 [Page 31]

Internet-Draft SCReAM July 2015

 o consecutive_frame_skips, i.e the number of consecutive frame skips

 The flag skip_frame is set to 1 if any of the conditions below is
 met, otherwise it is set to 0.

 o age_vec(n) > 0.2 && consecutive_frame_skips < 5

 o frame_skip_intensity < 0.5 && since_last_frame_skip >= 1.0/
 frame_skip_intensity

 o frame_skip_intensity >= 0.5 && consecutive_frame_skips <
 (frame_skip_intensity -0.5)*10

 The arrangement makes sure that no more than 4 frames are skipped in
 sequence, the rationale is to ensure that the input to the video
 encoder does not change to much, something that may give poor
 prediction gain.

Authors’ Addresses

 Ingemar Johansson
 Ericsson AB
 Laboratoriegraend 11
 Luleaa 977 53
 Sweden

 Phone: +46 730783289
 Email: ingemar.s.johansson@ericsson.com

 Zaheduzzaman Sarker
 Ericsson AB
 Laboratoriegraend 11
 Luleaa 977 53
 Sweden

 Phone: +46 761153743
 Email: zaheduzzaman.sarker@ericsson.com

Johansson & Sarker Expires January 7, 2016 [Page 32]

