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Abstract

   This memo describes a rate adaptation algorithm for conversational
   video services.  The solution conforms to the packet conservation
   principle and uses a hybrid loss and delay based congestion control
   algorithm.  The algorithm is evaluated over both simulated Internet
   bottleneck scenarios as well as in a LTE (Long Term Evolution) system
   simulator and is shown to achieve both low latency and high video
   throughput in these scenarios.
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1.  Introduction

   Congestion in the internet is a reality and applications that are
   deployed in the internet must have congestion control schemes in
   place not only for the robustness of the service that it provides but
   also to ensure the function of the currently deployed internet.  As
   the interactive realtime communication imposes a great deal of
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   requirements on the transport, a robust, efficient rate adaptation
   for all access types is considered as an important part of
   interactive realtime communications as the transmission channel
   bandwidth may vary over time.  Wireless access such as LTE, which is
   an integral part of the current internet, increases the importance of
   rate adaptation as the channel bandwidth of a default LTE bearer
   [QoS-3GPP] can change considerably in a very short time frame.  Thus
   a rate adaptation solution for interactive realtime media, such as
   WebRTC, must be both quick and be able to operate over a large span
   in available channel bandwidth.  This memo describes a solution,named
   SCReAM, that is based on the self-clocking principle of TCP and uses
   techniques similar to what is used in a new delay based rate
   adaptation algorithm, LEDBAT [RFC6817].  Because neither TCP nor
   LEDBAT was designed for interactive realtime media, a few extra
   features are needed to make the concept work well within this
   context.  This memo describes these extra features.

1.1.  Wireless (LTE) access properties

   [I-D.ietf-rmcat-wireless-tests] introduces the complications that can
   be observed in wireless environments.  Wireless access such as LTE
   can typically not guarantee a given bandwidth, this is true
   especially for default bearers.  The network throughput may vary
   considerably for instance in cases where the wireless terminal is
   moving around.

   Unlike wireline bottlenecks with large statistical multiplexing it is
   not possible to try to maintain a given bitrate when congestion is
   detected with the hope that other flows will yield, this because
   there are generally few other flows competing for the same
   bottleneck.  Each user gets its own variable throughput bottleneck,
   where the throughput depends on factors like channel quality, network
   load and historical throughput.  The bottom line is, if the
   throughput drops, the sender has no other option than to reduce the
   bitrate.  In addition, the grace time, i.e. allowed reaction time
   from the time that the congestion is detected until a reaction in
   terms of a rate reduction is effected, is generally very short, in
   the order of one RTT (Round Trip Time).

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [RFC2119]
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3.  Overview of SCReAM Algorithm

   The core SCReAM algorithm has similarities to concepts like self-
   clocking used in TFWC [TFWC] and follows packet conservation
   principles.  The packet conservation principle is described as an
   important key-factor behind the protection of networks from
   congestion [FACK].

   The packet conservation principle is realized by including an
   indication of the highest received sequence number in the feedback,
   see Section 5, from the receiver back to the sender, the sender keeps
   a list of transmitted packets and their respective sizes.  This
   information is then used to determine how many bytes can be
   transmitted.  A congestion window puts an upper limit on how many
   bytes can be in flight, i.e. transmitted but not yet acknowledged.
   The congestion window is determined in a way similar to LEDBAT
   [RFC6817].  This ensures that the e2e latency is kept low.  The basic
   functionality is quite simple, there are however a few steps to take
   to make the concept work with conversational media.  These will be
   briefly described in sections Section 3.1 to Section 3.3.

   The rate adaptation solution constitutes three parts- congestion
   control, transmission scheduling and media rate adaptation.  All
   these three parts reside at the sender side.  The receiver side
   algorithm is very simple in comparison as it only generates
   acknowledgements to received RTP packets.

3.1.  Congestion Control

   The congestion control sets an upper limit on how much data can be in
   the network (bytes in flight); this limit is called CWND (congestion
   window) and is used in the transmission scheduling.

   The SCReAM congestion control method, uses LEDBAT [RFC6817] to
   measure the OWD (one way delay).  The SCReAM sender calculates the
   congestion window based on the feedback from SCReAM receiver.  The
   congestion window is allowed to increase if the OWD is below a
   predefined target, otherwise the congestion window decreases.  The
   delay target is typically set to 50-100ms.  This ensures that the OWD
   is kept low on the average.  The reaction to loss events is similar
   to that of loss based TCP, i.e. an instant reduction of CWND.

   LEDBAT is designed with file transfers as main use case which means
   that the algorithm must be modified somewhat to work with rate-
   limited sources such as video.  The modifications are

   o  Congestion window validation techniques.  These are similar in
      action as the method described in [I-D.ietf-tcpm-newcwv].

Johansson & Sarker       Expires January 7, 2016                [Page 4]



Internet-Draft                   SCReAM                        July 2015

   o  Fast start for bitrate increase.  It makes the video bitrate ramp-
      up within 5 to 10 seconds.  The behavior is similar to TCP
      slowstart.  The fast start is exited when congestion is detected.
      The fast start state can be resumed if the congestion level is
      low, this to enable a reasonably quick rate increase in case link
      throughput increases.

   o  Adaptive delay target.  This helps the congestion control to
      compete with FTP traffic to some degree.

3.2.  Transmission Scheduling

   Transmission scheduling limits the output of data, given by the
   relation between the number of bytes in flight and the congestion
   window similar to TCP.  Packet pacing is used to mitigate issues with
   coalescing that may cause increased jitter and/or packet loss in the
   media traffic.

3.3.  Media Rate Control

   The media rate control serves to adjust the media bitrate to ramp up
   quickly enough to get a fair share of the system resources when link
   throughput increases.

   The reaction to reduced throughput must be prompt in order to avoid
   getting too much data queued up in the RTP packet queues.  The media
   bitrate is decreased if the RTP queue size exceeds a threshold.

   In cases where the sender frame queues increase rapidly such as the
   case of a RAT (Radio Access Type) handover it may be necessary to
   implement additional actions, such as discarding of encoded video
   frames or frame skipping in order to ensure that the RTP queues are
   drained quickly.  Frame skipping means that the frame rate is
   temporarily reduced.  Discarding of old video frames is a more
   efficient way to reduce media latency than frame skipping but it
   comes with a requirement to repair codec state, frame skipping is
   thus to prefer as a first remedy.  Frame skipping is described as an
   optional to implement feature in this specification.

4.  Detailed Description of SCReAM

4.1.  SCReAM Sender

   This section describes the sender side algorithm in more detail.  It
   is split between the network congestion control and the video rate
   adaptation.
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   Figure 1 shows the functional overview of a SCReAM sender.  The RTP
   application interaction with congestion control is described in
   [I-D.ietf-rmcat-app-interaction].  Here we use a more decomposed
   version of the implementation model in the sense that the RTP packets
   may be queued up in the sender, the transmission of these RTP packets
   is controlled by a transmission scheduler.  A SCReAM sender
   implements rate control and a queue for each media type or source,
   where RTP packets containing encoded media frames are temporarily
   stored for transmission, the figure shows the details for when two
   video sources (a.k.a streams) are used.

        ----------------------------    -----------------------------
        |       Video encoder      |    |        Video encoder      |
        ----------------------------    -----------------------------
         ^                |       ^      ^                 |       ^
      (1)|             (2)|    (3)|   (1)|              (2)|    (3)|
         |               RTP      |      |                RTP      |
         |                V       |      |                 V       |
         |          ------------- |      |           ------------- |
    -----------     |           |--  -----------     |           |--
    | Rate    | (4) |   Queue   |    | Rate    | (4) |   Queue   |
    | control |<----|           |    | control |<----|           |
    |         |     |RTP packets|    |         |     |RTP packets|
    -----------     |           |    -----------     |           |
                    -------------                    -------------
                          |                                |
                          ---------------     --------------
                                     (5)|     |(5)
                                       RTP   RTP
                                        |     |
                                        v     v
           --------------          ----------------
           |  Network   |    (8)   | Transmission |
           | congestion |<-------->|   scheduler  |
           |  control   |          |              |
           --------------          ----------------
                ^                         |
                |         (7)             |(6)
                ---------RTCP----------  RTP
                                      |   |
                                      |   v
                                  -------------
                                  |    UDP    |
                                  |  socket   |
                                  -------------

                  Figure 1: SCReAM sender functional view
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   Video frames are encoded and forwarded to the queue (2).  The media
   rate adaptation adapts to the size of the RTP queue and controls the
   video bitrate (1).  The RTP packets are picked from each queue based
   on some defined priority order or simply in a round robin fashion
   (5).  A transmission scheduler takes care of the transmission of RTP
   packets, to be written to the UDP socket (6).  In the general case
   all media must go through the transmission scheduler and is allowed
   to be transmitted if the number of bytes in flight is less than the
   congestion window.  Audio frames can however be allowed to be
   transmitted immediately as audio is typically low bitrate and thus
   contributes little to congestion, this is something that is left as
   an implementation choice.  RTCP packets are received (7) and the
   information about bytes in flight and congestion window is exchanged
   between the network congestion control and the transmission scheduler
   (8).

4.1.1.  Constants and Parameter values

   A set of constants are defined in Table 1, state variables are
   defined in Table 2.  And finally, local variables are described in
   Table 3.

   An init value [] indicates an empty array.
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   +-------------------------------+------------------------+----------+
   | Constant                      | Explanation            | Value    |
   +-------------------------------+------------------------+----------+
   | OWD_TARGET_LO                 | Min OWD target         | 0.1s     |
   | OWD_TARGET_HI                 | Max OWD target         | 0.4s     |
   | MAX_BYTES_IN_FLIGHT_HEAD_ROOM | Headroom for           | 1.1      |
   |                               | limitation of CWND     |          |
   | GAIN                          | Gain factor for        | 1.0      |
   |                               | congestion window      |          |
   |                               | adjustment             |          |
   | BETA                          | CWND scale factor due  | 0.6      |
   |                               | to loss event          |          |
   | BETA_R                        | Target rate scale      | 0.8      |
   |                               | factor due to loss     |          |
   |                               | event                  |          |
   | BYTES_IN_FLIGHT_SLACK         | Additional slack [%]   | 10%      |
   |                               | to the congestion      |          |
   |                               | window                 |          |
   | RATE_ADJUST_INTERVAL          | Interval between video | 0.1s     |
   |                               | bitrate adjustments    |          |
   | FRAME_PERIOD                  | Video coder frame      |          |
   |                               | period [s]             |          |
   | TARGET_BITRATE_MIN            | Min target_bitrate     |          |
   |                               | [bps]                  |          |
   | TARGET_BITRATE_MAX            | Max target_bitrate     |          |
   |                               | [bps]                  |          |
   | RAMP_UP_TIME                  | Timespan [s] from      | 10s      |
   |                               | lowest to highest      |          |
   |                               | bitrate                |          |
   | PRE_CONGESTION_GUARD          | Guard factor against   | 0.0..0.2 |
   |                               | early congestion       |          |
   |                               | onset. A higher value  |          |
   |                               | gives less jitter      |          |
   |                               | possibly at the        |          |
   |                               | expense of a lower     |          |
   |                               | video bitrate.         |          |
   | TX_QUEUE_SIZE_FACTOR          | Guard factor against   | 0.0..2.0 |
   |                               | RTP queue buildup      |          |
   +-------------------------------+------------------------+----------+

                            Table 1: Constants
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   +-------------------------+--------------------+--------------------+
   | Variable                | Explanation        | Init value         |
   +-------------------------+--------------------+--------------------+
   | owd_target              | OWD target         | OWD_TARGET_LO      |
   | owd_fraction_avg        | EWMA filtered      | 0.0                |
   |                         | owd_fraction       |                    |
   | owd_fraction_hist       | Vector of the last | []                 |
   |                         | 20 owd_fraction    |                    |
   | owd_trend               | OWD trend,         | 0.0                |
   |                         | indicates          |                    |
   |                         | incipient          |                    |
   |                         | congestion         |                    |
   | owd_trend_mem           | Low pass filtered  | 0.0                |
   |                         | version of         |                    |
   |                         | owd_trend          |                    |
   | owd_norm_hist           | Vector of the last | []                 |
   |                         | 100 owd_norm       |                    |
   | mss                     | Maximum segment    | 1000               |
   |                         | size = Max RTP     |                    |
   |                         | packet size [byte] |                    |
   | min_cwnd                | Minimum congestion | 2*MSS              |
   |                         | window [byte]      |                    |
   | in_fast_start           | True if in fast    | true               |
   |                         | start state        |                    |
   | cwnd                    | Congestion window  | min_cwnd           |
   |                         | [byte]             |                    |
   | cwnd_i                  | Congestion window  | 1                  |
   |                         | inflection point   |                    |
   | bytes_newly_acked       | The number of      | 0                  |
   |                         | bytes that was     |                    |
   |                         | acknowledged with  |                    |
   |                         | the last received  |                    |
   |                         | acknowledgement    |                    |
   |                         | i.e. bytes         |                    |
   |                         | acknowledged since |                    |
   |                         | the last CWND      |                    |
   |                         | update [byte].     |                    |
   |                         | Reset after a CWND |                    |
   |                         | update             |                    |
   | send_wnd                | Upper limit of how | 0                  |
   |                         | many bytes that    |                    |
   |                         | can be transmitted |                    |
   |                         | [byte].  Updated   |                    |
   |                         | when CWND is       |                    |
   |                         | updated and when   |                    |
   |                         | RTP packet is      |                    |
   |                         | transmitted        |                    |
   | t_pace                  | Approximate        | 0.001              |
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   |                         | estimate of inter- |                    |
   |                         | packet             |                    |
   |                         | transmission       |                    |
   |                         | interval [s],      |                    |
   |                         | updated when RTP   |                    |
   |                         | packet transmitted |                    |
   | age_vec                 | A vector of the    | []                 |
   |                         | last 20 RTP packet |                    |
   |                         | queue delay        |                    |
   |                         | samples            |                    |
   | frame_skip_intensity    | Indicates the      | 0.0                |
   |                         | intensity of the   |                    |
   |                         | frame skips        |                    |
   | since_last_frame_skip   | Number of video    | 0                  |
   |                         | frames since the   |                    |
   |                         | last skip          |                    |
   | consecutive_frame_skips | Number of          | 0                  |
   |                         | consecutive frame  |                    |
   |                         | skips              |                    |
   | target_bitrate          | Video target       | TARGET_BITRATE_MIN |
   |                         | bitrate [bps]      |                    |
   | target_bitrate_i        | Video target       | 1                  |
   |                         | bitrate inflection |                    |
   |                         | point i.e. the     |                    |
   |                         | last known highest |                    |
   |                         | target_bitrate     |                    |
   |                         | during fast start. |                    |
   |                         | Used to limit      |                    |
   |                         | bitrate increase   |                    |
   |                         | close to the last  |                    |
   |                         | know congestion    |                    |
   |                         | point              |                    |
   | rate_transmit           | Measured transmit  | 0.0                |
   |                         | bitrate [bps]      |                    |
   | rate_acked              | Measured           | 0.0                |
   |                         | throughput based   |                    |
   |                         | on received        |                    |
   |                         | acknowledgements   |                    |
   |                         | [bps]              |                    |
   | rate_rtp                | Measured bitrate   | 0.0                |
   |                         | from the media     |                    |
   |                         | encoder [bps]      |                    |
   | rate_rtp_median         | Median value of    | 0.0                |
   |                         | rate_rtp, computed |                    |
   |                         | over more than 10s |                    |
   |                         | [bps]              |                    |
   | s_rtt                   | Smoothed RTT [s],  | 0.0                |
   |                         | computed similar   |                    |
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   |                         | to method depicted |                    |
   |                         | in [RFC6298]       |                    |
   | rtp_queue_size          | Size of RTP        | 0                  |
   |                         | packets in queue   |                    |
   |                         | [bits]             |                    |
   | rtp_size                | Size of the last   | 0                  |
   |                         | transmitted RTP    |                    |
   |                         | packets [byte]     |                    |
   | frame_skip              | Skip encoding of   | false              |
   |                         | video frame if     |                    |
   |                         | true               |                    |
   +-------------------------+--------------------+--------------------+

                         Table 2: State variables

   +------------------+------------------------------------------------+
   | Variable         | Explanation                                    |
   +------------------+------------------------------------------------+
   | owd              | OWD = One way delay with base delay subtracted |
   |                  | [s]. This is an estimate of the network        |
   |                  | queueing delay.                                |
   | owd_fraction     | OWD as a fraction of the OWD target            |
   | owd_norm         | OWD normalized to OWD_TARGET_LO                |
   | owd_norm_mean    | Average OWD norm over the last 100 samples     |
   | owd_norm_mean_sh | Average OWD norm over the last 20 samples      |
   | owd_norm_var     | OWD norm variance over the last 100 samples    |
   | off_target       | Relation between OWD and OWD target            |
   | scl_i            | A general scalefactor that is applied to the   |
   |                  | CWND or target_bitrate increase                |
   | x_cwnd           | Additional increase of CWND, used when         |
   |                  | send_wnd is computed                           |
   | pace_bitrate     | The allowed RTP packet transmission rate, used |
   |                  | in the computation of t_pace [bps]             |
   | age_avg          | Average RTP queue delay [s]                    |
   | increment        | Allowed target_bitrate increase                |
   | current_rate     | Max of rate_transmit and rate_acked            |
   +------------------+------------------------------------------------+

                    Table 3: Local temporary variables

4.1.2.  Network congestion control

   This section explains the network congestion control, it contains two
   main functions

   o  Computation of congestion window at the sender: Gives an upper
      limit to the number of bytes in flight i.e. how many bytes that
      have been transmitted but not yet acknowledged.
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   o  Transmission scheduling at the sender: RTP packets are transmitted
      if allowed by the relation between the number of bytes in flight
      and the congestion window.  This is controlled by the send window.

   Unlike TCP, SCReAM is not a byte oriented protocol, rather it is an
   RTP packet oriented protocol.  Thus it keeps a list of transmitted
   RTP packets and their respective sending times (wall-clock time).
   The feedback indicates the highest received RTP sequence number and a
   timestamp (wall-clock time) when it was received.  In addition, an
   ACK list is included to make it possible to determine lost packets.

4.1.2.1.  Congestion window update

   The congestion window is computed from the one way (extra) delay
   estimates (OWD) that are obtained from the send and received
   timestamp of the RTP packets.  LEDBAT [RFC6817] explains the details
   of the computation of the OWD.  An OWD sample is obtained for each
   received acknowledgement.  No smoothing of the OWD samples occur,
   however some smoothing occurs anyway as the computation of the CWND
   is in itself a low pass filter function.

   SCReAM uses the terminology "Bytes in flight (bytes_in_flight)" which
   is computed as the sum of the sizes of the RTP packets ranging from
   the RTP packet most recently transmitted down to but not including
   the acknowledged packet with the highest sequence number.  As an
   example: If RTP packet was sequence number SN with transmitted and
   the last ACK indicated SN-5 as the highest received sequence number
   then bytes in flight is computed as the sum of the size of RTP
   packets with sequence number SN-4, SN-3, SN-2, SN-1 and SN.

   CWND is updated differently depending on whether the congestion
   control is in fast start or not and if a loss event is detected.  A
   Boolean variable in_fast_start indicates if the congestion is in fast
   start state.

   A loss event indicates one or more lost RTP packets within an RTT.
   This is detected by means of inspection for holes in the sequence
   number space in the acknowledgements with some margin for possible
   packet reordering in the network.  As an alternative, a timer for
   loss detection similar to TCP RACK may be used.

   Below is described the actions when an acknowledgement from the
   receiver is received.

   bytes_newly_acked is updated.

   The OWD fraction and an average of it are computed as
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   owd_fraction = owd/owd_target

   owd_fraction_avg = 0.9* owd_fraction_avg + 0.1* owd_fraction

   The OWD fraction is sampled every 50ms and the last 20 samples are
   stored in a vector (owd_fraction_hist).  This vector is used in the
   computation of an OWD trend that gives a value between 0.0 and 1.0
   depending on how close to congestion it is.  The OWD trend is
   calculated as follows

   Let R(owd_fraction_hist,K) be the autocorrelation function of
   owd_fraction_hist at lag K.  The 1st order prediction coefficient is
   formulated as

   a = R(owd_fraction_hist,1)/R(owd_fraction_hist,0)

   The prediction coefficient a has positive values if OWD shows an
   increasing trend, thus an indication of congestion is obtained before
   the OWD target is reached.  The prediction coefficient is further
   multiplied with owd_fraction_avg to reduce sensitivity to increasing
   OWD when OWD is very small.  The OWD trend is thus computed as

   owd_trend = max(0.0,min(1.0,a*owd_fraction_avg))

   owd_trend_mem = max(0.99*owd_trend_mem, owd_trend)

   The owd_trend is utilized in the media rate control and to determine
   when to exit slow start. owd_trend_mem is used to enforce a less
   aggressive rate increase after congestion events.

   An off target value is computed as

   off_target = (owd_target - owd) / owd_target

   A temporal variable is scl_i is computed as

   scl_i = max(0.2, min(1.0, (abs(cwnd-cwnd_i)/cwnd_i*4)^2))

   scl_i is used to limit the CWND increase when close to the last known
   max value, before congestion was last detected.

   The congestion window update depends on whether a loss event has
   occurred, and if the congestion control is if fast start or not.
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   ____________________________________________________________________

   On loss event:

   If a loss event is detected then in_fast_start is set to false and
   CWND is updated according to

   cwnd_i = cwnd

   cwnd = max(min_cwnd,cwnd*BETA)

   otherwise the CWND update continues

   ____________________________________________________________________

   in_fast_start = true:

   in_fast_start is set to false and cwnd_i=cwnd if owd_trend >= 0.2 and
   otherwise CWND is updated according to

   cwnd = cwnd + bytes_newly_acked*scl_i

   ____________________________________________________________________

   in_fast_start = false:

   Values of off_target > 0.0 indicates that the congestion window can
   be increased.  This is done according to the equations below.

   gain = GAIN*(1.0 + max(0.0, 1.0 - owd_trend/ 0.2))

   The equation above limits the gain when near congestion is detected

   gain *= scl_i

   This equation limits the gain when CWND is close to its last known
   max value

   cwnd += gain * off_target * bytes_newly_acked * mss / cwnd

   Values of off_target <= 0.0 indicates congestion, CWND is then
   updated according to the equation

   cwnd += GAIN*off_target*bytes_newly_acked*mss/cwnd

   The equations above are very similar to what is specified in
   [RFC6817].  There are however a few differences.
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   o  [RFC6817] specifies a constant GAIN, this specification however
      limits the gain when CWND is increased dependent on near
      congestion state and the relation to the last known max CWND
      value.

   o  [RFC6817] specifies that the CWND increased is limited by an
      additional function controlled by a constant ALLOWED_INCREASE.
      This additional limitation is removed in this specification.

   ____________________________________________________________________

   A number of final steps in the congestion window update procedure are
   outlined below

   ____________________________________________________________________

   Resume fast start:

   Fast start can be resumed in order to speed up the bitrate increase
   in case congestion abates.  The condition to resume fast start
   (in_fast_start = true) is that owd_trend is less than 0.2 for 1.0
   seconds or more.

   ____________________________________________________________________

   Competing flows compensation, adjustment of owd_target:

   Competing flows compensation is needed to avoid that flows congestion
   controlled by SCReAM are starved out by flows that are more
   aggressive in their nature.  The owd_target is adjusted according to
   the owd_norm_mean_sh whenever owd_norm_var is below a given value.
   The condition to update owd_target is fulfilled if owd_norm_var <
   0.16 (indicating that the standard deviation is less than 0.4).
   owd_target is then update as:

   owd_target = min(OWD_TARGET_HI,max(OWD_TARGET_LO, owd_norm_mean_sh*
   OWD_TARGET_LO*1.1))

   ____________________________________________________________________

   Final CWND adjustment step:

   The congestion window is limited by the maximum number of bytes in
   flight over the last 1.0 seconds according to

   cwnd = min(cwnd, max_bytes_in_flight*MAX_BYTES_IN_FLIGHT_HEAD_ROOM)
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   This avoids possible over-estimation of the throughput after for
   example, idle periods.

   Finally cwnd is set to ensure that it is at least min_cwnd

   cwnd = max(cwnd, MIN_CWND)

4.1.2.2.  Transmission scheduling

   The principle is to allow packet transmission of an RTP packet only
   if the number of bytes in flight is less than the congestion window.
   There are however two reasons why this strict rule will not work
   optimally:

   o  Bitrate variations: The video frame size is always varying to a
      larger or smaller extent, a strict rule as the one given above
      will have the effect that the video bitrate have difficulties to
      increase as the congestion window puts a too hard restriction on
      the video frame size variation, this further can lead to
      occasional queuing of RTP packets in the RTP packet queue that
      will prevent bitrate increase because of the increased RTP queue
      size.

   o  Reverse (feedback) path congestion: Especially in transport over
      buffer-bloated networks, the one way delay in the reverse
      direction may jump due to congestion.  The effect of this is that
      the acknowledgements are delayed with the result that the self-
      clocking is temporarily halted, even though the forward path is
      not congested.

   Packets are transmitted at a pace given by the send window, computed
   below

   The send window is computed differently depending on OWD and its
   relation to the OWD target.

   o  If owd > owd_target:
      The send window is computed as
      send_wnd = cwnd-bytes_in_flight
      This enforces a strict rule that helps to prevent further queue
      buildup.

   o  If owd <= owd_target:
      A helper variable
      x_cwnd=1.0+BYTES_IN_FLIGHT_SLACK*max(0.0,
      min(1.0,1.0-owd_trend/0.5))/100.0
      is computed.  The send window is computed as
      send_wnd = max(cwnd*x_cwnd, cwnd+mss)-bytes_in_flight
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      This gives a slack that reduces as congestion increases,
      BYTES_IN_FLIGHT_SLACK is a maximum allowed slack in percent.  A
      large value increases the robustness to bitrate variations in the
      source and congested feedback channel issues.  The possible
      drawback is increased delay or packet loss when forward path
      congestion occur.

4.1.3.  Video rate control

   The video rate control is operated based on the size of the RTP
   packet send queue and observed loss events.  In addition, owd_trend
   is also considered in the rate control, this to reduce the amount of
   induced network jitter.

   A variable target_bitrate is adjusted depending on the congestion
   state.  The target bitrate can vary between a minimum value
   (target_bitrate_min) and a maximum value (target_bitrate_max).

   For the overall bitrate adjustment, two network throughput estimates
   are computed :

   o  rate_transmit: The measured transmit bitrate

   o  rate_acked: The ACKed bitrate, i.e. the volume of ACKed bits per
      time unit.

   Both estimates are updated every 200ms.

   The current throughput current_rate is computed as the maximum value
   of rate_transmit and rate_acked.  The rationale behind the use of
   rate_acked in addition to rate_transmit is that rate_transmit is
   affected also by the amount of data that is available to transmit,
   thus a lack of data to transmit can be seen as reduced throughput
   that may itself cause an unnecessary rate reduction.  To overcome
   this shortcoming; rate_acked is used as well.  This gives a more
   stable throughput estimate.

   The bitrate is updated at regular intervals, given by
   RATE_ADJUST_INTERVAL and differently depending the fast start state

   The rate change behavior depends on whether a loss event has
   occurred, and if the congestion control is if fast start or not.
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   ____________________________________________________________________

   On loss event:

   First of all the target_bitrate is updated if a new loss event was
   indicated and the rate change procedure is exited.

   target_bitrate_i = target_bitrate

   target_bitrate = max(BETA_R* target_bitrate, TARGET_BITRATE_MIN)

   If no loss event was indicated then the rate change procedure
   continues.

   ____________________________________________________________________

   in_fast_start = true:

   An allowed increment is computed based on the congestion level and
   the relation to target_bitrate_i

   scl_i = (target_bitrate - target_bitrate_i)/ target_bitrate_i

   increment = TARGET_BITRATE_MAX* RATE_ADJUST_INTERVAL/RAMP_UP_TIME*
   (1.0- min(1.0, owd_trend/0.1))

   increment *= max(0.2, min(1.0, (scl_i*4)^2))

   target_bitrate += increment

   target_bitrate is reduced further if congestion is detected.

   target_bitrate *= (1.0- PRE_CONGESTION_GUARD*owd_trend)

   ____________________________________________________________________

   in_fast_start = false:

   target_bitrate_i is updated to the current value of target_bitrate if
   in_fast_start was true the last time the bitrate was updated.

   A pre-congestion indicator is computed as

   pre_congestion = min(1.0, max(0.0, owd_fraction_avg-0.3)/0.7)

   pre_congestion += owd_trend

   The target bitrate is computed as
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   target_bitrate=current_rate*(1.0-
   PRE_CONGESTION_GUARD*pre_congestion)-TX_QUEUE_SIZE_FACTOR
   *rtp_queue_size

   ____________________________________________________________________

   Final step:

   As a final step, the target bitrate is limited such that it is kept
   within reasonable bounds.

   In cases where input stimuli to the media encoder is static, for
   instance in "talking head" scenarios, the target bitrate is not
   always fully utilized.  This may cause undesirable oscillations in
   the target bitrate in the cases where the link throughput is limited
   and the media coder input stimuli changes between static and varying.

   To overcome this issue, the target bitrate is capped to be less than
   a given multiplier of a median value of the history of media coder
   output bitrates.  A rate_rtp_limit is computed as

   rate_rtp_limit = max(br, max(rate_rtp,rtp_rate_median))

   A multiplier is applied to rate_rtp_limit, depending on congestion
   history

   rate_rtp_limit *= (2.0-1.0*owd_trend_mem)

   The target_bitrate is then limited by rate_rtp_limit

   target_bitrate = min(target_bitrate, rate_rtp_limit)

   Finally the target_bitrate is enforced to be within the defined min
   and max values

   target_bitrate =
   min(TARGET_BITRATE_MAX,max(TARGET_BITRATE_MIN,target_bitrate))

4.2.  SCReAM Receiver

   The SCReAM receiver is very simple in its implementation.  The task
   is to feedback acknowledgements of received packets.  For that
   purpose a set of state variables are needed, these are explained in
   Table 4.

   One set of state variables are maintained per stream.
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   +-----------------------------+-----------------------------+-------+
   | Variable                    | Explanation                 | Init  |
   |                             |                             | value |
   +-----------------------------+-----------------------------+-------+
   | rx_timestamp                | The wall clock timestamp    | 0     |
   |                             | when the latest RTP packet  |       |
   |                             | was received                |       |
   | highest_rtp_sequence_number | The highest received        | 0     |
   |                             | sequence number             |       |
   | ack_vector                  | A 16 bit vector that        | 0     |
   |                             | indicates received RTP      |       |
   |                             | packets with a sequence     |       |
   |                             | number lower than           |       |
   |                             | highest_rtp_sequence_number |       |
   | n_loss                      | An 8 bit counter for the    | 0     |
   |                             | number of lost RTP packets, |       |
   |                             | separate counters are       |       |
   |                             | maintained for each SSRC    |       |
   | n_ECN                       | An 8 bit counter for the    | 0     |
   |                             | number of ECN-CE marked RTP |       |
   |                             | packets, separate counters  |       |
   |                             | are maintained for each     |       |
   |                             | SSRC                        |       |
   | pending_feedback            | Indicates that an RTP       | false |
   |                             | packet was received and     |       |
   |                             | that an RTCP packet can be  |       |
   |                             | generated when RTCP timing  |       |
   |                             | rules permit                |       |
   | last_transmit_t             | Last time an RTCP packet    | -1.0  |
   |                             | was transmitted, this is    |       |
   |                             | used to ensure that RTCP    |       |
   |                             | feedback is generated       |       |
   |                             | fairly for all streams.     |       |
   +-----------------------------+-----------------------------+-------+

                         Table 4: State variables

   Upon reception of an RTP packet, the state variables in Table 4
   should be updated and the RTCP processing function should be
   notified.  An RTCP packet is later generated based on the state
   variables, how often this is done depends on the RTCP bandwidth.

5.  Feedback Message

   The feedback is over RTCP [RFC3550] and is based on [RFC4585].  It is
   implemented as a transport layer feedback message (RTPFB), see
   proposed example in Figure 2.  The feedback control information part
   (FCI) consists of the following elements.
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   o  Highest received RTP sequence number: The highest received RTP
      sequence number for the given SSRC

   o  n_lost: Ackumulated number of lost RTP packets for the given SSRC

   o  Timestamp: A timestamp value indicating when the last packet was
      received which makes it possible to compute the one way (extra)
      delay (OWD).

   o  n_ECN: Ackumulated number of ECN-CE marked RTP packets for the
      given SSRC

   o  Source quench bit (Q): Makes it possible to request the sender to
      reduce its congestion window.  This is useful if WebRTC media is
      received from many hosts and it becomes necessary to balance the
      bitrates between the streams.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |V=2|P|   FMT   |       PT      |          length               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  SSRC of packet sender                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  SSRC of media source                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | Highest recv. seq. nr. (16b)  |    n_lost     |   n_ECN       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    Timestamp (32bits)                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |Q|               Reserved for future use                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 2: Transport layer feedback message

   To make the feedback as frequent as possible, the feedback packets
   are transmitted as reduced size RTCP according to [RFC5506].

   The timestamp clock time is recommended to be set to a fixed value
   such as 1000Hz, defined in this specification.  The n_lost and n_ECN
   makes it possible to take necessary actions on the detection of lost
   and ECN marked packets.

   Section 4 describes the main algorithm details and how the feedback
   is used.
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6.  Discussion

   This section covers a few open discussion points

   o  RTCP feedback overhead: SCReAM benefits from a relatively frequent
      feedback.  Experiments have shown that a feedback rate roughly
      equal to the frame rate gives a stable self-clocking and
      robustness against loss of feedback.  With a maximum bitrate of
      1500kbps the RTCP feedback overhead is in the range 10-15kbps with
      reduced size RTCP, including IP and UDP framing, in other words
      the RTCP overhead is quite modest and should not pose a problem in
      the general case.  Other solutions may be required in highly
      asymmetrical link capacity cases.  Worth notice is that SCReAM can
      work with as low feedback rates as once every 200ms, this however
      comes with a higher sensitivity to loss of feedback and also a
      potential reduction in throughput.

   o  AVPF mode: The RTCP feedback is based on AVPF regular mode.  The
      SCReAM feedback is transmitted as reduced size RTCP so save
      overhead, it is however required to transmit full compound RTCP at
      regular intervals, this interval can be controlled by trr-int
      depicted in [RFC4585].

   o  BETA, CWND scale factor due to loss: The BETA value is recommended
      to be higher than 0.5.  The reason behind this is that congestion
      control for multimedia has to deal with a source that is rate
      limited.  A file transfer has "unlimited" source bitrate in
      comparison.  The outcome is that SCReAM must be a little more
      aggressive than a file transfer in order to not be out competed.

7.  Conclusion

   This memo describes a congestion control algorithm for RMCAT that it
   is particularly good at handling the quickly changing condition in
   wireless network such as LTE.  The solution conforms to the packet
   conservation principle and leverages on novel congestion control
   algorithms and recent TCP research, together with media bitrate
   determined by sender queuing delay and given delay thresholds.  The
   solution has shown potential to meet the goals of high link
   utilization and prompt reaction to congestion.  The solution is
   realized with a new RFC4585 transport layer feedback message.

8.  Open issues

   A list of open issues.

   o  Describe how clock drift compensation is done
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   o  Describe how FEC overhead is accounted for in target_bitrate
      computation

   o  Investigate the impact of more sparse RTCP feedback, for instance
      once per RTT

   o  Describe ECN behavior

9.  Implementation status

   [Editor’s note: Please remove the whole section before publication,
   as well reference to RFC 6982]

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC6982].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

   According to [RFC6982], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see it".

9.1.  OpenWebRTC

   The SCReAM algorithm has been implemented in the OpenWebRTC project
   [OpenWebRTC], an open source WebRTC implementation from Ericsson
   Research.  This SCReAM implementation is usable with any WebRTC
   endpoint using OpenWebRTC.

   o  Organization : Ericsson Research, Ericsson.

   o  Name : OpenWebRTC gst plug-in.

   o  Implementation link : The GStreamer plug-in code for SCReAM can be
      found at github repository [SCReAM-Implementation] and is waiting
      to be merged with the master branch of OpebWebRTC repository
      (https://github.com/EricssonResearch/openwebrtc/pull/413).
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      However, people are encouraged to have look at it and send
      feedback.  This wiki
      (https://github.com/EricssonResearch/openwebrtc/wiki) contains
      required information for building and using OpenWebRTC.  Note that
      to get all the SCReAM related code and build them, one has to use
      the cerbero fork from DanielLindstrm’ s repository
      (https://github.com/DanielLindstrm/cerbero/tree/scream) instead of
      EricssonResearch fork of cerbero.

   o  Coverage : The code implements [I-D.ietf-rmcat-scream-cc].  The
      current implementation has been tuned and tested to adapt video
      stream and does not adapt the audio streams.

   o  Implementation experience : The implementation of the algorithm in
      the OpenWebRTC has given great insight into the algorithm itself
      and its interaction with other involved modules such as encoder,
      RTP queue etc.  In fact it proves the usability of a self-clocked
      rate adaptation algorithm in the real WebRTC system.  The
      implementation experience has led to various algorithm
      improvements both in terms of stability and design.  For example,
      improved rate increase behavior and removal of the ACK vector from
      the feedback message.

   o  Contact : irc://chat.freenode.net/openwebrtc

9.2.  A C++ Implementation of SCReAM

   o  Organization : Ericsson Research, Ericsson.

   o  Name : SCReAM.

   o  Implementation link : A C++ implementation of SCreAM is also
      available which is aimed for doing quick
      experiments[SCReAM-Cplusplus_Implementation].  This repository
      also includes a rudimentary implementation of a simulator.  This
      code can be included in other simulators like NS-3.

   o  Coverage : The code implements [I-D.ietf-rmcat-scream-cc]

   o  Contact : ingemar.s.johansson@ericsson.com,
      zaheduzzaman.sarker@ericsson.com
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11.  IANA Considerations

   A new RFC4585 transport layer feedback message needs to be
   standardized.

12.  Security Considerations

   The feedback can be vulnerable to attacks similar to those that can
   affect TCP.  It is therefore recommended that the RTCP feedback is at
   least integrity protected.

13.  Change history

   A list of changes:

   o  WG-00 to WG-01 : Changed the Source code section to Implementation
      status section.

   o  -05 to WG-00 : First version of WG doc, moved additional features
      section to Appendix.  Added description of prioritization in
      SCReAM.  Added description of additional cap on target bitrate

   o  -04 to -05 : ACK vector is replaced by a loss counter, PT is
      removed from feedback, references to source code added

   o  -03 to -04 : Extensive changes due to review comments, code
      somewhat modified, frame skipping made optional

   o  -02 to -03 : Added algorithm description with equations, removed
      pseudo code and simulation results

   o  -01 to -02 : Updated GCC simulation results

   o  -00 to -01 : Fixed a few bugs in example code
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Appendix A.  Additional features

   This section describes additional features.  They are not required
   for the basic functionality of SCReAM but can improve performance in
   certain scenarios and topologies.

A.1.  Packet pacing

   Packet pacing is used in order to mitigate coalescing i.e. that
   packets are transmitted in bursts.

   Packet pacing is enforced when owd_fraction_avg is greater than 0.1.
   The time interval between consecutive packet transmissions is then
   enforced to equal or higher than t_pace where t_pace is given by the
   equations below.

   pace_bitrate = max (50000, cwnd* 8 / s_rtt)

   t_pace = rtp_size * 8 / pace_bitrate

   rtp_size is the size of the last transmitted RTP packet
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A.2.  Stream prioritization

   As mentioned in Section 4, the prioritization between several streams
   can be managed in many different ways.  The most simple way is to
   pick RTP packets from the RTP queues in a round-robin fashion.  For
   more advanced scheduling, more advanced algorithms are required.
   Below is described the algorithm that is implemented in the SCReAM
   code Section 9.

   Suppose that we have two video streams, where stream 1 has priority
   1.0 and stream 2 has priority 0.5.  Each stream starts with a credit
   of 0 bytes, credit is given to streams that are not given permission
   to transmit at a given scheduling instant, the credit is considered
   in later transmission instants.

   The steps below outline how transmission and scheduling of the two
   RTP streams can evolve.  For simplicily it is assumed that the stream
   RTP queues contain 1200 byte packets.

   1.  SCReAMs send window allows transmission of 1200 bytes.

       *  The stream with the highest priority is picked, in this case
          it is stream 1.  Stream 1 thus transmit 1200 bytes.

       *  Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
          and thus has a credit of 600 bytes.

   2.  SCReAMs send window allows transmission of another 1200 bytes.

       *  Stream 2 has too little credit (600 bytes) to transmit a 1200
          byte packet.

       *  Stream 1 is therefore picked again as it has the highest
          priority and thus gets to transmit yet another 1200 byte
          packet.

       *  Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
          and thus has a credit of 1200 bytes.

   3.  SCReAMs send window allows transmission of another 1200bytes.

       *  Stream 2 now has enough credit (1200 bytes) to transmit a 1200
          byte packet.

       *  Stream 2 thus transmits a 1200 byte packet and in the process
          gets its credit reduced by 1200 byte and is then down to a
          credit of 0.
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       *  Stream 1 gets its credit increased by 1200*1.0/0.5 = 2400 byte
          and thus has a credit of 2400 bytes.

   4.  SCReAMs send window allows transmission of another 1200 bytes.

       1.  Stream 1 now has the highest credit (2400bytes).

       2.  Stream 1 thus transmits a 1200 byte packet and in the process
           gets its credit reduced by 1200 byte and is then down to a
           credit of 1200 bytes.

       3.  Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
           and thus has a credit of 600 bytes.

   5.  SCReAMs send window allows transmission of another 1200 bytes.

       1.  Stream 1 still has the highest credit (1200 bytes).

       2.  Stream 1 thus transmits a 1200 byte packet and in the process
           gets its credit reduced by 1200 byte and is then down to a
           credit of 0.

       3.  Stream 2 gets its credit increased by 1200*0.5/1.0 = 600 byte
           and thus has a credit of 1200bytes.

   6.  SCReAMs send window allows transmission of another 1200 bytes.

       1.  Stream 2 now has the highest credit (1200 bytes).

       2.  Stream 2 thus transmits a 1200 byte packet and in the process
           gets its credit reduced by 1200 byte and is then down to a
           credit of 0.

       3.  Stream 1 gets its credit increased by 1200*1.0/0.5 = 2400
           byte and thus has a credit of 2400 bytes.

   The procedure above repeats it self.  In the above example it is
   quite easy to see that stream 1 gets to transmit 2 RTP packets for
   every 1 RTP packets that stream 2 gets to transmit.  The very detais
   of the algoritm is found in the C++ code (see Section 9) in the
   module ScreamTx and the functions getPrioritizedStream(..),
   addCredit(..) and subtractCredit(..).

   The above functionality works relatively well and operates with at
   the same speed as RTP packet transmission.  There are however cases
   where rate limited video or very large IR frames makes the
   prioritization less efficient.  The adjustPriorities(..) function in
   ScreamTx solves this issue on a longer time scale by means of an
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   additional compensation for deviations in the measured transmit
   bitrate of the individual streams.

   Prioritization mechanisms of sources that may be highly variant is a
   relatively complicated task to achieve.  The above outlined algorithm
   manages it to some degree but it is quite likely that the algorithm
   needs to be refined further.

A.3.  Q-bit semantics (source quench)

   The Q bit in the feedback is set by a receiver to signal that the
   sender should reduce the bitrate.  The sender will in response to
   this reduce the congestion window with the consequence that the video
   bitrate decreases.  A typical use case for source quench is when a
   receiver receives streams from sources located at different hosts and
   they all share a common bottleneck, typically it is difficult to
   apply any rate distribution signaling between the sending hosts.  The
   solution is then that the receiver sets the Q bit in the feedback to
   the sender that should reduce its rate, if the streams share a common
   bottleneck then the released bandwidth due to the reduction of the
   congestion window for the flow that had the Q bit set in the feedback
   will be grabbed by the other flows that did not have the Q bit set.
   This is ensured by the opportunistic behavior of SCReAM’s congestion
   control.  The source quench will have no or little effect if the
   flows do not share the same bottleneck.

   The reduction in congestion window is proportional to the amount of
   SCReAM RTCP feedback with the Q bit set, the below steps outline how
   the sender should react to RTCP feedback with the Q bit set.  The
   reduction is done once per RTT.  Let :

   o  n = Number of received RTCP feedback messages in one RTT

   o  n_q = Number of received RTCP feedback messages in one RTT, with Q
      bit set.

   The new congestion window is then expressed as:

   cwnd = max(MIN_CWND, cwnd*(1.0-0.5* n_q /n))

   Note that CWND is adjusted at most once per RTT.  Furthermore The
   CWND increase should be inhibited for one RTT if CWND has been
   decreased as a result of Q bits set in the feedback.

   The required intensity of the Q-bit set in the feedback in order to
   achieve a given rate distribution depends on many factors such as
   RTT, video source material etc.  The receiver thus need to monitor
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   the change in the received video bitrate on the different streams and
   adjust the intensity of the Q-bit accordingly.

A.4.  Frame skipping

   Frame skipping is a feature that makes it possible to reduce the size
   of the RTP queue in the cases that e.g. the channel throughput drops
   dramatically or even goes below the lowest possible video coder rate.
   Frame skipping is optional to implement as it can sometimes be
   difficult to realize e.g. due to lack of API function to support
   this.

   Frame skipping is controlled by a flag frame_skip which, if set to 1
   dictates that the video coder should skip the next video frame.  The
   frame skipping intensity at the current time instant is computed
   according to the steps below

   The queuing delay is sampled every frame period and the last 20
   samples are stored in a vector age_vec

   An average queuing delay is computed as a weighted sum over the
   samples in age_vec. age_avg at the current time instant is computed
   as

   age_avg(n) = SUM age_vec(n-k)*w(k) k = [0..20[

   w(n) are weight factors arranged to give the most recent samples a
   higher weight.

   The change in age_avg is computed as

   age_d = age_avg(n) - age_avg(n-1)

   The frame skipping intensity at the current time instant n is
   computed as

   o  If age_d > 0 and age_avg > 2*FRAME_PERIOD:
      frame_skip_intensity = min(1.0, (age_vec(n)-2*FRAME_PERIOD)/(4*
      FRAME_PERIOD)

   o  Otherwise frame skip intensity is set to zero

   The skip_frame flag is set depending on three variables

   o  frame_skip_intensity

   o  since_last_frame_skip, i.e the number of consecutive frames
      without frame skipping
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   o  consecutive_frame_skips, i.e the number of consecutive frame skips

   The flag skip_frame is set to 1 if any of the conditions below is
   met, otherwise it is set to 0.

   o  age_vec(n) > 0.2 && consecutive_frame_skips < 5

   o  frame_skip_intensity < 0.5 && since_last_frame_skip >= 1.0/
      frame_skip_intensity

   o  frame_skip_intensity >= 0.5 && consecutive_frame_skips <
      (frame_skip_intensity -0.5)*10

   The arrangement makes sure that no more than 4 frames are skipped in
   sequence, the rationale is to ensure that the input to the video
   encoder does not change to much, something that may give poor
   prediction gain.
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