
TCP Maintenance and Minor Extensions (TCPM) WG I. Rhee
Internet-Draft NCSU
Intended status: Informational L. Xu
Expires: August 8, 2017 UNL
 S. Ha
 Colorado
 A. Zimmermann

 L. Eggert
 NetApp
 R. Scheffenegger
 February 4, 2017

 CUBIC for Fast Long-Distance Networks
 draft-ietf-tcpm-cubic-04

Abstract

 CUBIC is an extension to the current TCP standards. The protocol
 differs from the current TCP standards only in the congestion window
 adjustment function in the sender side. In particular, it uses a
 cubic function instead of a linear window increase function of the
 current TCP standards to improve scalability and stability under fast
 and long distance networks. CUBIC and its predecessor algorithm have
 been adopted as default by Linux and have been used for many years.
 This document provides a specification of CUBIC to enable third party
 implementation and to solicit the community feedback through
 experimentation on the performance of CUBIC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 8, 2017.

Rhee, et al. Expires August 8, 2017 [Page 1]

Internet-Draft CUBIC February 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions . 3
 3. Design principle of CUBIC 4
 4. CUBIC Congestion Control 5
 4.1. Window growth function 6
 4.2. TCP-friendly region 7
 4.3. Concave region . 7
 4.4. Convex region . 7
 4.5. Multiplicative decrease 8
 4.6. Fast convergence . 8
 4.7. Timeout . 9
 5. Discussion . 9
 5.1. Fairness to standard TCP 9
 5.2. Using Spare Capacity 11
 5.3. Difficult Environments 12
 5.4. Investigating a Range of Environments 12
 5.5. Protection against Congestion Collapse 12
 5.6. Fairness within the Alternative Congestion Control
 Algorithm. . 12
 5.7. Performance with Misbehaving Nodes and Outside Attackers 12
 5.8. Behavior for Application-Limited Flows 12
 5.9. Responses to Sudden or Transient Events 13
 5.10. Incremental Deployment 13
 6. Security Considerations 13
 7. IANA Considerations . 13
 8. Acknowledgements . 13
 9. References . 13
 9.1. Normative References 13
 9.2. Informative References 14
 Authors’ Addresses . 15

Rhee, et al. Expires August 8, 2017 [Page 2]

Internet-Draft CUBIC February 2017

1. Introduction

 The low utilization problem of TCP in fast long-distance networks is
 well documented in [K03][RFC3649]. This problem arises from a slow
 increase of congestion window following a congestion event in a
 network with a large bandwidth delay product (BDP). Our experience
 [HKLRX06] indicates that this problem is frequently observed even in
 the range of congestion window sizes over several hundreds of packets
 (each packet is sized around 1000 bytes) especially under a network
 path with over 100ms round-trip times (RTTs). This problem is
 equally applicable to all Reno style TCP standards and their
 variants, including TCP-RENO [RFC5681], TCP-NewReno [RFC6582], TCP-
 SACK [RFC2018], SCTP [RFC4960], TFRC [RFC5348] that use the same
 linear increase function for window growth, which we refer to
 collectively as Standard TCP below.

 CUBIC [HRX08] is a modification to the congestion control mechanism
 of Standard TCP, in particular, to the window increase function of
 Standard TCP senders, to remedy this problem. Specifically, it uses
 a cubic function instead of a linear window increase function of the
 Standrad TCP to improve scalability and stability under fast and long
 distance networks.

 BIC-TCP, a predecessor of CUBIC, has been selected as default TCP
 congestion control algorithm by Linux in the year 2005 and been used
 for several years by the Internet community at large. CUBIC uses a
 similar window growth function as BIC-TCP and is designed to be less
 aggressive and fairer to TCP in bandwidth usage than BIC-TCP while
 maintaining the strengths of BIC-TCP such as stability, window
 scalability and RTT fairness. CUBIC has already been deployed
 globally by Linux. Through extensive testing in various Internet
 scenarios, we believe that CUBIC is safe for testing and deployment
 in the global Internet.

 In the ensuing sections, we first brefly explain the design principle
 of CUBIC, then provide the exact specification of CUBIC, and finally
 discuss the safety features of CUBIC following the guidelines
 specified in [RFC5033].

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Rhee, et al. Expires August 8, 2017 [Page 3]

Internet-Draft CUBIC February 2017

3. Design principle of CUBIC

 CUBIC [HRX08] uses a cubic window increase function in terms of the
 elapsed time from the last congestion event. While most alternative
 algorithms to Standard TCP uses a convex increase function where
 during congestion avoidance the window increment is always
 increasing, CUBIC uses both the concave and convex profiles of a
 cubic function for window increase. After a window reduction
 following a loss event detected by duplicate ACKs, it registers the
 window size where it got the loss event as W_max and performs a
 multiplicative decrease of congestion window and the regular fast
 recovery and retransmit of Standard TCP. After it enters into
 congestion avoidance from fast recovery, it starts to increase the
 window using the concave profile of the cubic function. The cubic
 function is set to have its plateau at W_max so the concave growth
 continues until the window size becomes W_max. After that, the cubic
 function turns into a convex profile and the convex window growth
 begins. This style of window adjustment (concave and then convex)
 improves protocol and network stability while maintaining high
 network utilization [CEHRX07]. This is because the window size
 remains almost constant, forming a plateau around W_max where network
 utilization is deemed highest and under steady state, most window
 size samples of CUBIC are close to W_max, thus promoting high network
 utilization and protocol stability. Note that protocols with convex
 increase functions have the maximum increments around W_max and
 introduces a large number of packet bursts around the saturation
 point of the network, likely causing frequent global loss
 synchronizations.

 Another notable feature of CUBIC is that its window increase rate is
 mostly independent of RTT, and follows a (cubic) function of the
 elapsed time from the beginning of congestion avoidance. This
 feature promotes per-flow fairness to Standard TCP as well as RTT-
 fairness. Note that Standard TCP performs well under short RTT and
 small bandwidth (or small BDP) networks. Only in a large long RTT
 and large bandwidth (or large BDP) networks, it has the scalability
 problem. An alternative protocol to Standard TCP designed to be
 friendly to Standard TCP at a per-flow basis must operate to increase
 its window much less aggressively in small BDP networks than in large
 BDP networks. In CUBIC, its window growth rate is slowest around the
 inflection point of the cubic function and this function does not
 depend on RTT. In a smaller BDP network where Standard TCP flows are
 working well, the absolute amount of the window decrease at a loss
 event is always smaller because of the multiplicative decrease.
 Therefore, in CUBIC, the starting window size after a loss event from
 which the window starts to increase, is smaller in a smaller BDP
 network, thus falling nearer to the plateau of the cubic function
 where the growth rate is slowest. By setting appropriate values of

Rhee, et al. Expires August 8, 2017 [Page 4]

Internet-Draft CUBIC February 2017

 the cubic function parameters, CUBIC sets its growth rate always no
 faster than Standard TCP around its inflection point. When the cubic
 function grows slower than the window of Standard TCP, CUBIC simply
 follows the window size of Standard TCP to ensure fairness to
 Standard TCP in a small BDP network. We call this region where CUBIC
 behaves like Standard TCP, the TCP-friendly region.

 CUBIC maintains the same window growth rate independent of RTTs
 outside of the TCP-friendly region, and flows with different RTTs
 have the similar window sizes under steady state when they operate
 outside the TCP-friendly region. This ensures CUBIC flows with
 different RTTs to have their bandwidth shares (approximately, window/
 RTT) linearly proportional to the inverse of their RTT ratio (the
 longer RTT, the smaller the share). This behavior is the same as
 that of Standard TCP under high statistical multiplexing environments
 where packet losses are independent of individual flow rates.
 However, under low statistical multiplexing environments, the
 bandwidth share ratio of Standard TCP flows with different RTTs is
 squarely proportional to the inverse of their RTT ratio [XHR04].
 CUBIC always ensures the linear ratio independent of the levels of
 statistical multiplexing. This is an improvement over Standard TCP.
 While there is no consensus on a particular bandwidth share ratios of
 different RTT flows, we believe that under wired Internet, use of the
 linear share notion seems more reasonable than equal share or a
 higher order shares. HTCP [LS08] currently uses the equal share.

 CUBIC sets the multiplicative window decrease factor to 0.7 while
 Standard TCP uses 0.5. While this improves the scalability of the
 protocol, a side effect of this decision is slower convergence
 especially under low statistical multiplexing environments. This
 design choice is following the observation that the author of HSTCP
 [RFC3649] has made along with other researchers (e.g., [GV02]): the
 current Internet becomes more asynchronous with less frequent loss
 synchronizations with high statistical multiplexing. Under this
 environment, even strict Multiplicative-Increase Multiplicative-
 Decrease (MIMD) can converge. CUBIC flows with the same RTT always
 converge to the same share of bandwidth independent of statistical
 multiplexing, thus achieving intra-protocol fairness. We also find
 that under the environments with sufficient statistical multiplexing,
 the convergence speed of CUBIC flows is reasonable.

4. CUBIC Congestion Control

 The unit of all window sizes in this document is segments of the
 maximum segment size (MSS), and the unit of all times is seconds.

Rhee, et al. Expires August 8, 2017 [Page 5]

Internet-Draft CUBIC February 2017

4.1. Window growth function

 CUBIC maintains the acknowledgment (ACK) clocking of Standard TCP by
 increasing congestion window only at the reception of ACK. The
 protocol does not make any change to the fast recovery and retransmit
 of TCP, such as TCP-NewReno [RFC6582] and TCP-SACK [RFC2018]. During
 congestion avoidance after fast recovery, CUBIC changes the window
 update algorithm of Standard TCP. Suppose that W_max is the window
 size before the window is reduced in the last fast retransmit and
 recovery.

 The window growth function of CUBIC uses the following function:

 W_cubic(t) = C*(t-K)^3 + W_max (Eq. 1)

 where C is a constant fixed to determine the aggressiveness of window
 growth in high BDP networks, t is the elapsed time from the last
 window reduction that is measured right after the fast recovery in
 response to duplicate ACKs or after the congestion window reduction
 in response to ECN-Echo ACKs, and K is the time period that the above
 function takes to increase the current window size to W_max if there
 is no further loss event and is calculated by using the following
 equation:

 K = cubic_root(W_max*(1-beta_cubic)/C) (Eq. 2)

 where beta_cubic is the CUBIC multiplication decrease factor, that
 is, when a packet loss detected by duplicate ACKs or a network
 congestion detected by ECN-Echo ACKs occurs, CUBIC reduces its
 current window cwnd to W_cubic(0)=W_max*beta_cubic. We discuss how
 we set C in the next Section in more details.

 Upon receiving an ACK during congestion avoidance, CUBIC computes the
 window growth rate during the next RTT period using Eq. 1. It sets
 W_cubic(t+RTT) as the candidate target value of congestion window,
 where RTT is the weithed average RTT calculated by the standard TCP.

 Depending on the value of the current window size cwnd, CUBIC runs in
 three different modes. First, if cwnd is less than the window size
 that Standard TCP would reach at time t after the last loss event,
 then CUBIC is in the TCP friendly region (we describe below how to
 determine this window size of Standard TCP in term of time t).
 Otherwise, if cwnd is less than W_max, then CUBIC is the concave
 region, and if cwnd is larger than W_max, CUBIC is in the convex
 region. Below, we describe the exact actions taken by CUBIC in each
 region.

Rhee, et al. Expires August 8, 2017 [Page 6]

Internet-Draft CUBIC February 2017

4.2. TCP-friendly region

 Standard TCP performs well in certain types of networks, for example,
 under short RTT and small bandwidth (or small BDP) networks. In
 these networks, we use the TCP-friendly region to ensure that CUBIC
 achieves at least the same throughput as the standard TCP.

 When receiving an ACK in congestion avoidance, we first check whether
 the protocol is in the TCP region or not. This is done by estimating
 the average rate of the Standard TCP using a simple analysis
 described in [FHP00]. It considers the Standard TCP as a special
 case of an Additive Increase and Multiplicative Decrease algorithm
 (AIMD), which has an additive factor alpha_aimd and a multiplicative
 factor beta_aimd with the following function:

 AVG_W_aimd = [alpha_aimd * (1+beta_aimd) /
 (2*(1-beta_aimd)*p)]^0.5 (Eq. 3)

 By the same analysis, the average window size of Standard TCP is
 (1.5/p)^0.5, as the Standard TCP is a special case of AIMD with
 alpha_aimd=1 and beta_aimd=0.5. Thus, for Eq. 3 to be the same as
 that of Standard TCP, alpha_aimd must be equal to
 3*(1-beta_aimd)/(1+beta_aimd). As AIMD increases its window by
 alpha_aimd per RTT, we can get the window size of AIMD in terms of
 the elapsed time t as follows:

 W_aimd(t) = W_max*beta_aimd +
 [3*(1-beta_aimd)/(1+beta_aimd)] * (t/RTT) (Eq. 4)

 If W_cubic(t) is less than W_aimd(t), then the protocol is in the TCP
 friendly region and cwnd SHOULD be set to W_aimd(t) at each reception
 of ACK.

4.3. Concave region

 When receiving an ACK in congestion avoidance, if the protocol is not
 in the TCP-friendly region and cwnd is less than W_max, then the
 protocol is in the concave region. In this region, cwnd MUST be
 incremented by (W_cubic(t+RTT) - cwnd)/cwnd for each received ACK,
 where W_cubic(t+RTT) is calculated using Eq. 1.

4.4. Convex region

 When the current window size of CUBIC is larger than W_max, it passes
 the plateau of the cubic function after which CUBIC follows the
 convex profile of the cubic function. Since cwnd is larger than the
 previous saturation point W_max, this indicates that the network
 conditions might have been perturbed since the last loss event,

Rhee, et al. Expires August 8, 2017 [Page 7]

Internet-Draft CUBIC February 2017

 possibly implying more available bandwidth after some flow
 departures. Since the Internet is highly asynchronous, some amount
 of perturbation is always possible without causing a major change in
 available bandwidth. In this phase, CUBIC is being very careful by
 very slowly increasing its window size. The convex profile ensures
 that the window increases very slowly at the beginning and gradually
 increases its growth rate. We also call this phase as the maximum
 probing phase since CUBIC is searching for a new W_max. In this
 region, cwnd MUST be incremented by (W_cubic(t+RTT) - cwnd)/cwnd for
 each received ACK, where W_cubic(t+RTT) is calculated using Eq. 1.

4.5. Multiplicative decrease

 When a packet loss detected by duplicate ACKs or a network congestion
 detected by ECN-Echo ACKs occurs, CUBIC updates its W_max, cwnd, and
 ssthresh (slow start threshold) as follows. Parameter beta_cubic
 SHOULD be set to 0.7.

 W_max = cwnd; // save window size before reduction
 ssthresh = cwnd * beta_cubic; // new slow start threshold
 cwnd = cwnd * beta_cubic; // window reduction

 A side effect of setting beta_cubic to a bigger value than 0.5 is
 slower convergence. We believe that while a more adaptive setting of
 beta_cubic could result in faster convergence, it will make the
 analysis of the protocol much harder. This adaptive adjustment of
 beta_cubic is an item for the next version of CUBIC.

4.6. Fast convergence

 To improve the convergence speed of CUBIC, we add a heuristic in the
 protocol. When a new flow joins the network, existing flows in the
 network need to give up their bandwidth shares to allow the flow some
 room for growth if the existing flows have been using all the
 bandwidth of the network. To increase this release of bandwidth by
 existing flows, the following mechanism called fast convergence
 SHOULD be implemented.

 With fast convergence, when a loss event occurs, before a window
 reduction of congestion window, a flow remembers the last value of
 W_max before it updates W_max for the current loss event. Let us
 call the last value of W_max to be W_last_max.

Rhee, et al. Expires August 8, 2017 [Page 8]

Internet-Draft CUBIC February 2017

 if (W_max < W_last_max){ // check downward trend
 W_last_max = W_max; // remember the last W_max
 W_max = W_max*(1+beta_cubic)/2; // further reduce W_max
 } else { // check upward trend
 W_last_max = W_max // remember the last W_max
 }

 This allows W_max to be slightly less than the original W_max. Since
 flows spend most of time around their W_max, flows with larger
 bandwidth shares tend to spend more time around the plateau allowing
 more time for flows with smaller shares to increase their windows.

4.7. Timeout

 In case of timeout, CUBIC follows the standard TCP to reduce cwnd,
 but sets ssthresh using beta_cubic (same as in Section 4.5).

5. Discussion

 In this section, we further discuss the safety features of CUBIC
 following the guidelines specified in [RFC5033].

 With a deterministic loss model where the number of packets between
 two successive lost events is always 1/p, CUBIC always operates with
 the concave window profile which greatly simplifies the performance
 analysis of CUBIC. The average window size of CUBIC can be obtained
 by the following function:

 AVG_W_cubic = [C*(3+beta_cubic)/(4*(1-beta_cubic))]^0.25 *
 (RTT^0.75) / (p^0.75) (Eq. 5)

 With beta_cubic set to 0.7, the above formula is reduced to:

 AVG_W_cubic = (C*3.7/1.2)^0.25 * (RTT^0.75) / (p^0.75) (Eq. 6)

 We will determine the value of C in the following subsection using
 Eq. 6.

5.1. Fairness to standard TCP

 In environments where standard TCP is able to make reasonable use of
 the available bandwidth, CUBIC does not significantly change this
 state.

 Standard TCP performs well in the following two types of networks:

 1. networks with a small bandwidth-delay product (BDP)

Rhee, et al. Expires August 8, 2017 [Page 9]

Internet-Draft CUBIC February 2017

 2. networks with a short RTT, but not necessarily a small BDP

 CUBIC is designed to behave very similarly to standard TCP in the
 above two types of networks. The following two tables show the
 average window size of standard TCP, HSTCP, and CUBIC. The average
 window size of standard TCP and HSTCP is from [RFC3649]. The average
 window size of CUBIC is calculated by using Eq. 6 and CUBIC TCP
 friendly mode for three different values of C.

 +----------+-------+--------+-------------+-------------+-----------+
 | Loss | TCP | HSTCP | CUBIC | CUBIC | CUBIC |
 | Rate P | | | (C=0.04) | (C=0.4) | (C=4) |
 +----------+-------+--------+-------------+-------------+-----------+
10^-2	12	12	12	12	12
10^-3	38	38	38	38	59
10^-4	120	263	120	187	333
10^-5	379	1795	593	1054	1874
10^-6	1200	12279	3332	5926	10538
10^-7	3795	83981	18740	33325	59261
10^-8	12000	574356	105383	187400	333250
 +----------+-------+--------+-------------+-------------+-----------+

 Response function of standard TCP, HSTCP, and CUBIC in networks with
 RTT = 0.1 seconds. The average window size is in MSS-sized segments.

 Table 1

 +--------+-----------+-----------+------------+-----------+---------+
 | Loss | Average | Average | CUBIC | CUBIC | CUBIC |
 | Rate P | TCP W | HSTCP W | (C=0.04) | (C=0.4) | (C=4) |
 +--------+-----------+-----------+------------+-----------+---------+
10^-2	12	12	12	12	12
10^-3	38	38	38	38	38
10^-4	120	263	120	120	120
10^-5	379	1795	379	379	379
10^-6	1200	12279	1200	1200	1874
10^-7	3795	83981	3795	5926	10538
10^-8	12000	574356	18740	33325	59261
 +--------+-----------+-----------+------------+-----------+---------+

 Response function of standard TCP, HSTCP, and CUBIC in networks with
 RTT = 0.01 seconds. The average window size is in MSS-sized
 segments.

 Table 2

 Both tables show that CUBIC with any of these three C values is more
 friendly to TCP than HSTCP, especially in networks with a short RTT

Rhee, et al. Expires August 8, 2017 [Page 10]

Internet-Draft CUBIC February 2017

 where TCP performs reasonably well. For example, in a network with
 RTT = 0.01 seconds and p=10^-6, TCP has an average window of 1200
 packets. If the packet size is 1500 bytes, then TCP can achieve an
 average rate of 1.44 Gbps. In this case, CUBIC with C=0.04 or C=0.4
 achieves exactly the same rate as Standard TCP, whereas HSTCP is
 about ten times more aggressive than Standard TCP.

 We can see that C determines the aggressiveness of CUBIC in competing
 with other protocols for the bandwidth. CUBIC is more friendly to
 the Standard TCP, if the value of C is lower. However, we do not
 recommend to set C to a very low value like 0.04, since CUBIC with a
 low C cannot efficiently use the bandwidth in long RTT and high
 bandwidth networks. Based on these observations, we find C=0.4 gives
 a good balance between TCP-friendliness and aggressiveness of window
 growth. Therefore, C SHOULD be set to 0.4. With C set to 0.4, Eq. 6
 is reduced to:

 AVG_W_cubic = 1.054 * (RTT^0.75) / (p^0.75) (Eq. 7)

 Eq. 7 is then used in the next subsection to show the scalability of
 CUBIC.

5.2. Using Spare Capacity

 CUBIC uses a more aggressive window growth function than Standard TCP
 under long RTT and high bandwidth networks.

 The following table shows that to achieve 10Gbps rate, standard TCP
 requires a packet loss rate of 2.0e-10, while CUBIC requires a packet
 loss rate of 2.9e-8.

 +------------------+-----------+---------+---------+---------+
 | Throughput(Mbps) | Average W | TCP P | HSTCP P | CUBIC P |
 +------------------+-----------+---------+---------+---------+
 | 1 | 8.3 | 2.0e-2 | 2.0e-2 | 2.0e-2 |
 | 10 | 83.3 | 2.0e-4 | 3.9e-4 | 2.9e-4 |
 | 100 | 833.3 | 2.0e-6 | 2.5e-5 | 1.4e-5 |
 | 1000 | 8333.3 | 2.0e-8 | 1.5e-6 | 6.3e-7 |
 | 10000 | 83333.3 | 2.0e-10 | 1.0e-7 | 2.9e-8 |
 +------------------+-----------+---------+---------+---------+

 Required packet loss rate for Standard TCP, HSTCP, and CUBIC to
 achieve a certain throughput. We use 1500-byte packets and an RTT of
 0.1 seconds.

 Table 3

Rhee, et al. Expires August 8, 2017 [Page 11]

Internet-Draft CUBIC February 2017

 Our test results in [HKLRX06] indicate that CUBIC uses the spare
 bandwidth left unused by existing Standard TCP flows in the same
 bottleneck link without taking away much bandwidth from the existing
 flows.

5.3. Difficult Environments

 CUBIC is designed to remedy the poor performance of TCP in fast long-
 distance networks.

5.4. Investigating a Range of Environments

 CUBIC has been extensively studied by using both NS-2 simulation and
 test-bed experiments covering a wide range of network environments.
 More information can be found in [HKLRX06].

 Same as Standard TCP, CUBIC is a loss-based congestion control
 algorithm. Therefore, CUBIC, which is designed to be more aggressive
 than Standard TCP in fast and long distance networks, can fill large
 drop-tail buffers more quickly than Standard TCP. In this case,
 proper queue sizing and management [RFC7567] could be used to reduce
 the packet queueing delay.

5.5. Protection against Congestion Collapse

 With regard to the potential of causing congestion collapse, CUBIC
 behaves like standard TCP since CUBIC modifies only the window
 adjustment algorithm of TCP. Thus, it does not modify the ACK
 clocking and Timeout behaviors of Standard TCP.

5.6. Fairness within the Alternative Congestion Control Algorithm.

 CUBIC ensures convergence of competing CUBIC flows with the same RTT
 in the same bottleneck links to an equal bandwidth share. When
 competing flows have different RTTs, their bandwidth shares are
 linearly proportional to the inverse of their RTT ratios. This is
 true independent of the level of statistical multiplexing in the
 link.

5.7. Performance with Misbehaving Nodes and Outside Attackers

 This is not considered in the current CUBIC.

5.8. Behavior for Application-Limited Flows

 CUBIC does not raise its congestion window size if the flow is
 currently limited by the application instead of the congestion
 window. In cases of idle periods, t in Eq. 1 MUST NOT include the

Rhee, et al. Expires August 8, 2017 [Page 12]

Internet-Draft CUBIC February 2017

 idle time; otherwise, W_cubic(t) might be very high after restarting
 from a long idle time.

5.9. Responses to Sudden or Transient Events

 In case that there is a sudden congestion, a routing change, or a
 mobility event, CUBIC behaves the same as Standard TCP.

5.10. Incremental Deployment

 CUBIC requires only the change of TCP senders, and does not require
 any assistant of routers.

6. Security Considerations

 This proposal makes no changes to the underlying security of TCP.

7. IANA Considerations

 There are no IANA considerations regarding this document.

8. Acknowledgements

 Alexander Zimmermann and Lars Eggert have received funding from the
 European Union’s Horizon 2020 research and innovation program
 2014-2018 under grant agreement No. 644866 (SSICLOPS). This document
 reflects only the authors’ views and the European Commission is not
 responsible for any use that may be made of the information it
 contains.

9. References

9.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
 RFC 3649, DOI 10.17487/RFC3649, December 2003,
 <http://www.rfc-editor.org/info/rfc3649>.

Rhee, et al. Expires August 8, 2017 [Page 13]

Internet-Draft CUBIC February 2017

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5033] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033,
 DOI 10.17487/RFC5033, August 2007,
 <http://www.rfc-editor.org/info/rfc5033>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",
 RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <http://www.rfc-editor.org/info/rfc5348>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <http://www.rfc-editor.org/info/rfc6582>.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",
 BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <http://www.rfc-editor.org/info/rfc7567>.

9.2. Informative References

 [CEHRX07] Cai, H., Eun, D., Ha, S., Rhee, I., and L. Xu, "Stochastic
 Ordering for Internet Congestion Control and its
 Applications", In Proceedings of IEEE INFOCOM , May 2007.

 [FHP00] Floyd, S., Handley, M., and J. Padhye, "A Comparison of
 Equation-Based and AIMD Congestion Control", May 2000.

 [GV02] Gorinsky, S. and H. Vin, "Extended Analysis of Binary
 Adjustment Algorithms", Technical Report TR2002-29,
 Department of Computer Sciences , The University of Texas
 at Austin , August 2002.

 [HKLRX06] Ha, S., Kim, Y., Le, L., Rhee, I., and L. Xu, "A Step
 toward Realistic Performance Evaluation of High-Speed TCP
 Variants", International Workshop on Protocols for Fast
 Long-Distance Networks , February 2006.

Rhee, et al. Expires August 8, 2017 [Page 14]

Internet-Draft CUBIC February 2017

 [HRX08] Ha, S., Rhee, I., and L. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", ACM SIGOPS Operating System
 Review , 2008.

 [K03] Kelly, T., "Scalable TCP: Improving Performance in
 HighSpeed Wide Area Networks", ACM SIGCOMM Computer
 Communication Review , April 2003.

 [LS08] Leith, D. and R. Shorten, "H-TCP: TCP Congestion Control
 for High Bandwidth-Delay Product Paths", Internet-draft
 draft-leith-tcp-htcp-06 , April 2008.

 [XHR04] Xu, L., Harfoush, K., and I. Rhee, "Binary Increase
 Congestion Control for Fast, Long Distance Networks", In
 Proceedings of IEEE INFOCOM , March 2004.

Authors’ Addresses

 Injong Rhee
 North Carolina State University
 Department of Computer Science
 Raleigh, NC 27695-7534
 US

 Email: rhee@ncsu.edu

 Lisong Xu
 University of Nebraska-Lincoln
 Department of Computer Science and Engineering
 Lincoln, NE 68588-0115
 US

 Email: xu@unl.edu

 Sangtae Ha
 University of Colorado at Boulder
 Department of Computer Science
 Boulder, CO 80309-0430
 US

 Email: sangtae.ha@colorado.edu

Rhee, et al. Expires August 8, 2017 [Page 15]

Internet-Draft CUBIC February 2017

 Alexander Zimmermann

 Phone: +49 175 5766838
 Email: alexander.zimmermann@rwth-aachen.de

 Lars Eggert
 NetApp
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 151 12055791
 Email: lars@netapp.com

 Richard Scheffenegger

 Email: rscheff@gmx.at

Rhee, et al. Expires August 8, 2017 [Page 16]

