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Abstract

   CUBIC is an extension to the current TCP standards.  The protocol
   differs from the current TCP standards only in the congestion window
   adjustment function in the sender side.  In particular, it uses a
   cubic function instead of a linear window increase function of the
   current TCP standards to improve scalability and stability under fast
   and long distance networks.  CUBIC and its predecessor algorithm have
   been adopted as default by Linux and have been used for many years.
   This document provides a specification of CUBIC to enable third party
   implementation and to solicit the community feedback through
   experimentation on the performance of CUBIC.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 8, 2017.
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   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The low utilization problem of TCP in fast long-distance networks is
   well documented in [K03][RFC3649].  This problem arises from a slow
   increase of congestion window following a congestion event in a
   network with a large bandwidth delay product (BDP).  Our experience
   [HKLRX06] indicates that this problem is frequently observed even in
   the range of congestion window sizes over several hundreds of packets
   (each packet is sized around 1000 bytes) especially under a network
   path with over 100ms round-trip times (RTTs).  This problem is
   equally applicable to all Reno style TCP standards and their
   variants, including TCP-RENO [RFC5681], TCP-NewReno [RFC6582], TCP-
   SACK [RFC2018], SCTP [RFC4960], TFRC [RFC5348] that use the same
   linear increase function for window growth, which we refer to
   collectively as Standard TCP below.

   CUBIC [HRX08] is a modification to the congestion control mechanism
   of Standard TCP, in particular, to the window increase function of
   Standard TCP senders, to remedy this problem.  Specifically, it uses
   a cubic function instead of a linear window increase function of the
   Standrad TCP to improve scalability and stability under fast and long
   distance networks.

   BIC-TCP, a predecessor of CUBIC, has been selected as default TCP
   congestion control algorithm by Linux in the year 2005 and been used
   for several years by the Internet community at large.  CUBIC uses a
   similar window growth function as BIC-TCP and is designed to be less
   aggressive and fairer to TCP in bandwidth usage than BIC-TCP while
   maintaining the strengths of BIC-TCP such as stability, window
   scalability and RTT fairness.  CUBIC has already been deployed
   globally by Linux.  Through extensive testing in various Internet
   scenarios, we believe that CUBIC is safe for testing and deployment
   in the global Internet.

   In the ensuing sections, we first brefly explain the design principle
   of CUBIC, then provide the exact specification of CUBIC, and finally
   discuss the safety features of CUBIC following the guidelines
   specified in [RFC5033].

2.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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3.  Design principle of CUBIC

   CUBIC [HRX08] uses a cubic window increase function in terms of the
   elapsed time from the last congestion event.  While most alternative
   algorithms to Standard TCP uses a convex increase function where
   during congestion avoidance the window increment is always
   increasing, CUBIC uses both the concave and convex profiles of a
   cubic function for window increase.  After a window reduction
   following a loss event detected by duplicate ACKs, it registers the
   window size where it got the loss event as W_max and performs a
   multiplicative decrease of congestion window and the regular fast
   recovery and retransmit of Standard TCP.  After it enters into
   congestion avoidance from fast recovery, it starts to increase the
   window using the concave profile of the cubic function.  The cubic
   function is set to have its plateau at W_max so the concave growth
   continues until the window size becomes W_max.  After that, the cubic
   function turns into a convex profile and the convex window growth
   begins.  This style of window adjustment (concave and then convex)
   improves protocol and network stability while maintaining high
   network utilization [CEHRX07].  This is because the window size
   remains almost constant, forming a plateau around W_max where network
   utilization is deemed highest and under steady state, most window
   size samples of CUBIC are close to W_max, thus promoting high network
   utilization and protocol stability.  Note that protocols with convex
   increase functions have the maximum increments around W_max and
   introduces a large number of packet bursts around the saturation
   point of the network, likely causing frequent global loss
   synchronizations.

   Another notable feature of CUBIC is that its window increase rate is
   mostly independent of RTT, and follows a (cubic) function of the
   elapsed time from the beginning of congestion avoidance.  This
   feature promotes per-flow fairness to Standard TCP as well as RTT-
   fairness.  Note that Standard TCP performs well under short RTT and
   small bandwidth (or small BDP) networks.  Only in a large long RTT
   and large bandwidth (or large BDP) networks, it has the scalability
   problem.  An alternative protocol to Standard TCP designed to be
   friendly to Standard TCP at a per-flow basis must operate to increase
   its window much less aggressively in small BDP networks than in large
   BDP networks.  In CUBIC, its window growth rate is slowest around the
   inflection point of the cubic function and this function does not
   depend on RTT.  In a smaller BDP network where Standard TCP flows are
   working well, the absolute amount of the window decrease at a loss
   event is always smaller because of the multiplicative decrease.
   Therefore, in CUBIC, the starting window size after a loss event from
   which the window starts to increase, is smaller in a smaller BDP
   network, thus falling nearer to the plateau of the cubic function
   where the growth rate is slowest.  By setting appropriate values of
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   the cubic function parameters, CUBIC sets its growth rate always no
   faster than Standard TCP around its inflection point.  When the cubic
   function grows slower than the window of Standard TCP, CUBIC simply
   follows the window size of Standard TCP to ensure fairness to
   Standard TCP in a small BDP network.  We call this region where CUBIC
   behaves like Standard TCP, the TCP-friendly region.

   CUBIC maintains the same window growth rate independent of RTTs
   outside of the TCP-friendly region, and flows with different RTTs
   have the similar window sizes under steady state when they operate
   outside the TCP-friendly region.  This ensures CUBIC flows with
   different RTTs to have their bandwidth shares (approximately, window/
   RTT) linearly proportional to the inverse of their RTT ratio (the
   longer RTT, the smaller the share).  This behavior is the same as
   that of Standard TCP under high statistical multiplexing environments
   where packet losses are independent of individual flow rates.
   However, under low statistical multiplexing environments, the
   bandwidth share ratio of Standard TCP flows with different RTTs is
   squarely proportional to the inverse of their RTT ratio [XHR04].
   CUBIC always ensures the linear ratio independent of the levels of
   statistical multiplexing.  This is an improvement over Standard TCP.
   While there is no consensus on a particular bandwidth share ratios of
   different RTT flows, we believe that under wired Internet, use of the
   linear share notion seems more reasonable than equal share or a
   higher order shares.  HTCP [LS08] currently uses the equal share.

   CUBIC sets the multiplicative window decrease factor to 0.7 while
   Standard TCP uses 0.5.  While this improves the scalability of the
   protocol, a side effect of this decision is slower convergence
   especially under low statistical multiplexing environments.  This
   design choice is following the observation that the author of HSTCP
   [RFC3649] has made along with other researchers (e.g., [GV02]): the
   current Internet becomes more asynchronous with less frequent loss
   synchronizations with high statistical multiplexing.  Under this
   environment, even strict Multiplicative-Increase Multiplicative-
   Decrease (MIMD) can converge.  CUBIC flows with the same RTT always
   converge to the same share of bandwidth independent of statistical
   multiplexing, thus achieving intra-protocol fairness.  We also find
   that under the environments with sufficient statistical multiplexing,
   the convergence speed of CUBIC flows is reasonable.

4.  CUBIC Congestion Control

   The unit of all window sizes in this document is segments of the
   maximum segment size (MSS), and the unit of all times is seconds.
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4.1.  Window growth function

   CUBIC maintains the acknowledgment (ACK) clocking of Standard TCP by
   increasing congestion window only at the reception of ACK.  The
   protocol does not make any change to the fast recovery and retransmit
   of TCP, such as TCP-NewReno [RFC6582] and TCP-SACK [RFC2018].  During
   congestion avoidance after fast recovery, CUBIC changes the window
   update algorithm of Standard TCP.  Suppose that W_max is the window
   size before the window is reduced in the last fast retransmit and
   recovery.

   The window growth function of CUBIC uses the following function:

       W_cubic(t) = C*(t-K)^3 + W_max (Eq. 1)

   where C is a constant fixed to determine the aggressiveness of window
   growth in high BDP networks, t is the elapsed time from the last
   window reduction that is measured right after the fast recovery in
   response to duplicate ACKs or after the congestion window reduction
   in response to ECN-Echo ACKs, and K is the time period that the above
   function takes to increase the current window size to W_max if there
   is no further loss event and is calculated by using the following
   equation:

       K = cubic_root(W_max*(1-beta_cubic)/C) (Eq. 2)

   where beta_cubic is the CUBIC multiplication decrease factor, that
   is, when a packet loss detected by duplicate ACKs or a network
   congestion detected by ECN-Echo ACKs occurs, CUBIC reduces its
   current window cwnd to W_cubic(0)=W_max*beta_cubic.  We discuss how
   we set C in the next Section in more details.

   Upon receiving an ACK during congestion avoidance, CUBIC computes the
   window growth rate during the next RTT period using Eq. 1.  It sets
   W_cubic(t+RTT) as the candidate target value of congestion window,
   where RTT is the weithed average RTT calculated by the standard TCP.

   Depending on the value of the current window size cwnd, CUBIC runs in
   three different modes.  First, if cwnd is less than the window size
   that Standard TCP would reach at time t after the last loss event,
   then CUBIC is in the TCP friendly region (we describe below how to
   determine this window size of Standard TCP in term of time t).
   Otherwise, if cwnd is less than W_max, then CUBIC is the concave
   region, and if cwnd is larger than W_max, CUBIC is in the convex
   region.  Below, we describe the exact actions taken by CUBIC in each
   region.
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4.2.  TCP-friendly region

   Standard TCP performs well in certain types of networks, for example,
   under short RTT and small bandwidth (or small BDP) networks.  In
   these networks, we use the TCP-friendly region to ensure that CUBIC
   achieves at least the same throughput as the standard TCP.

   When receiving an ACK in congestion avoidance, we first check whether
   the protocol is in the TCP region or not.  This is done by estimating
   the average rate of the Standard TCP using a simple analysis
   described in [FHP00].  It considers the Standard TCP as a special
   case of an Additive Increase and Multiplicative Decrease algorithm
   (AIMD), which has an additive factor alpha_aimd and a multiplicative
   factor beta_aimd with the following function:

       AVG_W_aimd = [ alpha_aimd * (1+beta_aimd) /
                      (2*(1-beta_aimd)*p) ]^0.5 (Eq. 3)

   By the same analysis, the average window size of Standard TCP is
   (1.5/p)^0.5, as the Standard TCP is a special case of AIMD with
   alpha_aimd=1 and beta_aimd=0.5.  Thus, for Eq. 3 to be the same as
   that of Standard TCP, alpha_aimd must be equal to
   3*(1-beta_aimd)/(1+beta_aimd).  As AIMD increases its window by
   alpha_aimd per RTT, we can get the window size of AIMD in terms of
   the elapsed time t as follows:

       W_aimd(t) = W_max*beta_aimd +
                   [3*(1-beta_aimd)/(1+beta_aimd)] * (t/RTT) (Eq. 4)

   If W_cubic(t) is less than W_aimd(t), then the protocol is in the TCP
   friendly region and cwnd SHOULD be set to W_aimd(t) at each reception
   of ACK.

4.3.  Concave region

   When receiving an ACK in congestion avoidance, if the protocol is not
   in the TCP-friendly region and cwnd is less than W_max, then the
   protocol is in the concave region.  In this region, cwnd MUST be
   incremented by (W_cubic(t+RTT) - cwnd)/cwnd for each received ACK,
   where W_cubic(t+RTT) is calculated using Eq. 1.

4.4.  Convex region

   When the current window size of CUBIC is larger than W_max, it passes
   the plateau of the cubic function after which CUBIC follows the
   convex profile of the cubic function.  Since cwnd is larger than the
   previous saturation point W_max, this indicates that the network
   conditions might have been perturbed since the last loss event,
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   possibly implying more available bandwidth after some flow
   departures.  Since the Internet is highly asynchronous, some amount
   of perturbation is always possible without causing a major change in
   available bandwidth.  In this phase, CUBIC is being very careful by
   very slowly increasing its window size.  The convex profile ensures
   that the window increases very slowly at the beginning and gradually
   increases its growth rate.  We also call this phase as the maximum
   probing phase since CUBIC is searching for a new W_max.  In this
   region, cwnd MUST be incremented by (W_cubic(t+RTT) - cwnd)/cwnd for
   each received ACK, where W_cubic(t+RTT) is calculated using Eq. 1.

4.5.  Multiplicative decrease

   When a packet loss detected by duplicate ACKs or a network congestion
   detected by ECN-Echo ACKs occurs, CUBIC updates its W_max, cwnd, and
   ssthresh (slow start threshold) as follows.  Parameter beta_cubic
   SHOULD be set to 0.7.

      W_max = cwnd;                 // save window size before reduction
      ssthresh = cwnd * beta_cubic; // new slow start threshold
      cwnd = cwnd * beta_cubic;     // window reduction

   A side effect of setting beta_cubic to a bigger value than 0.5 is
   slower convergence.  We believe that while a more adaptive setting of
   beta_cubic could result in faster convergence, it will make the
   analysis of the protocol much harder.  This adaptive adjustment of
   beta_cubic is an item for the next version of CUBIC.

4.6.  Fast convergence

   To improve the convergence speed of CUBIC, we add a heuristic in the
   protocol.  When a new flow joins the network, existing flows in the
   network need to give up their bandwidth shares to allow the flow some
   room for growth if the existing flows have been using all the
   bandwidth of the network.  To increase this release of bandwidth by
   existing flows, the following mechanism called fast convergence
   SHOULD be implemented.

   With fast convergence, when a loss event occurs, before a window
   reduction of congestion window, a flow remembers the last value of
   W_max before it updates W_max for the current loss event.  Let us
   call the last value of W_max to be W_last_max.
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      if (W_max < W_last_max){            // check downward trend
          W_last_max = W_max;             // remember the last W_max
          W_max = W_max*(1+beta_cubic)/2; // further reduce W_max
      } else {                            // check upward trend
          W_last_max = W_max              // remember the last W_max
      }

   This allows W_max to be slightly less than the original W_max.  Since
   flows spend most of time around their W_max, flows with larger
   bandwidth shares tend to spend more time around the plateau allowing
   more time for flows with smaller shares to increase their windows.

4.7.  Timeout

   In case of timeout, CUBIC follows the standard TCP to reduce cwnd,
   but sets ssthresh using beta_cubic (same as in Section 4.5).

5.  Discussion

   In this section, we further discuss the safety features of CUBIC
   following the guidelines specified in [RFC5033].

   With a deterministic loss model where the number of packets between
   two successive lost events is always 1/p, CUBIC always operates with
   the concave window profile which greatly simplifies the performance
   analysis of CUBIC.  The average window size of CUBIC can be obtained
   by the following function:

       AVG_W_cubic = [C*(3+beta_cubic)/(4*(1-beta_cubic))]^0.25 *
                       (RTT^0.75) / (p^0.75) (Eq. 5)

   With beta_cubic set to 0.7, the above formula is reduced to:

       AVG_W_cubic = (C*3.7/1.2)^0.25 * (RTT^0.75) / (p^0.75) (Eq. 6)

   We will determine the value of C in the following subsection using
   Eq. 6.

5.1.  Fairness to standard TCP

   In environments where standard TCP is able to make reasonable use of
   the available bandwidth, CUBIC does not significantly change this
   state.

   Standard TCP performs well in the following two types of networks:

      1. networks with a small bandwidth-delay product (BDP)
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      2. networks with a short RTT, but not necessarily a small BDP

   CUBIC is designed to behave very similarly to standard TCP in the
   above two types of networks.  The following two tables show the
   average window size of standard TCP, HSTCP, and CUBIC.  The average
   window size of standard TCP and HSTCP is from [RFC3649].  The average
   window size of CUBIC is calculated by using Eq. 6 and CUBIC TCP
   friendly mode for three different values of C.

   +----------+-------+--------+-------------+-------------+-----------+
   |     Loss |   TCP |  HSTCP |       CUBIC |       CUBIC |     CUBIC |
   |   Rate P |       |        |    (C=0.04) |     (C=0.4) |     (C=4) |
   +----------+-------+--------+-------------+-------------+-----------+
   |    10^-2 |    12 |     12 |          12 |          12 |        12 |
   |    10^-3 |    38 |     38 |          38 |          38 |        59 |
   |    10^-4 |   120 |    263 |         120 |         187 |       333 |
   |    10^-5 |   379 |   1795 |         593 |        1054 |      1874 |
   |    10^-6 |  1200 |  12279 |        3332 |        5926 |     10538 |
   |    10^-7 |  3795 |  83981 |       18740 |       33325 |     59261 |
   |    10^-8 | 12000 | 574356 |      105383 |      187400 |    333250 |
   +----------+-------+--------+-------------+-------------+-----------+

   Response function of standard TCP, HSTCP, and CUBIC in networks with
   RTT = 0.1 seconds.  The average window size is in MSS-sized segments.

                                  Table 1

   +--------+-----------+-----------+------------+-----------+---------+
   |   Loss |   Average |   Average |      CUBIC |     CUBIC |   CUBIC |
   | Rate P |     TCP W |   HSTCP W |   (C=0.04) |   (C=0.4) |   (C=4) |
   +--------+-----------+-----------+------------+-----------+---------+
   |  10^-2 |        12 |        12 |         12 |        12 |      12 |
   |  10^-3 |        38 |        38 |         38 |        38 |      38 |
   |  10^-4 |       120 |       263 |        120 |       120 |     120 |
   |  10^-5 |       379 |      1795 |        379 |       379 |     379 |
   |  10^-6 |      1200 |     12279 |       1200 |      1200 |    1874 |
   |  10^-7 |      3795 |     83981 |       3795 |      5926 |   10538 |
   |  10^-8 |     12000 |    574356 |      18740 |     33325 |   59261 |
   +--------+-----------+-----------+------------+-----------+---------+

   Response function of standard TCP, HSTCP, and CUBIC in networks with
       RTT = 0.01 seconds.  The average window size is in MSS-sized
                                 segments.

                                  Table 2

   Both tables show that CUBIC with any of these three C values is more
   friendly to TCP than HSTCP, especially in networks with a short RTT
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   where TCP performs reasonably well.  For example, in a network with
   RTT = 0.01 seconds and p=10^-6, TCP has an average window of 1200
   packets.  If the packet size is 1500 bytes, then TCP can achieve an
   average rate of 1.44 Gbps.  In this case, CUBIC with C=0.04 or C=0.4
   achieves exactly the same rate as Standard TCP, whereas HSTCP is
   about ten times more aggressive than Standard TCP.

   We can see that C determines the aggressiveness of CUBIC in competing
   with other protocols for the bandwidth.  CUBIC is more friendly to
   the Standard TCP, if the value of C is lower.  However, we do not
   recommend to set C to a very low value like 0.04, since CUBIC with a
   low C cannot efficiently use the bandwidth in long RTT and high
   bandwidth networks.  Based on these observations, we find C=0.4 gives
   a good balance between TCP-friendliness and aggressiveness of window
   growth.  Therefore, C SHOULD be set to 0.4.  With C set to 0.4, Eq. 6
   is reduced to:

      AVG_W_cubic = 1.054 * (RTT^0.75) / (p^0.75) (Eq. 7)

   Eq. 7 is then used in the next subsection to show the scalability of
   CUBIC.

5.2.  Using Spare Capacity

   CUBIC uses a more aggressive window growth function than Standard TCP
   under long RTT and high bandwidth networks.

   The following table shows that to achieve 10Gbps rate, standard TCP
   requires a packet loss rate of 2.0e-10, while CUBIC requires a packet
   loss rate of 2.9e-8.

      +------------------+-----------+---------+---------+---------+
      | Throughput(Mbps) | Average W | TCP P   | HSTCP P | CUBIC P |
      +------------------+-----------+---------+---------+---------+
      |                1 |       8.3 | 2.0e-2  | 2.0e-2  | 2.0e-2  |
      |               10 |      83.3 | 2.0e-4  | 3.9e-4  | 2.9e-4  |
      |              100 |     833.3 | 2.0e-6  | 2.5e-5  | 1.4e-5  |
      |             1000 |    8333.3 | 2.0e-8  | 1.5e-6  | 6.3e-7  |
      |            10000 |   83333.3 | 2.0e-10 | 1.0e-7  | 2.9e-8  |
      +------------------+-----------+---------+---------+---------+

      Required packet loss rate for Standard TCP, HSTCP, and CUBIC to
   achieve a certain throughput.  We use 1500-byte packets and an RTT of
                               0.1 seconds.

                                  Table 3
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   Our test results in [HKLRX06] indicate that CUBIC uses the spare
   bandwidth left unused by existing Standard TCP flows in the same
   bottleneck link without taking away much bandwidth from the existing
   flows.

5.3.  Difficult Environments

   CUBIC is designed to remedy the poor performance of TCP in fast long-
   distance networks.

5.4.  Investigating a Range of Environments

   CUBIC has been extensively studied by using both NS-2 simulation and
   test-bed experiments covering a wide range of network environments.
   More information can be found in [HKLRX06].

   Same as Standard TCP, CUBIC is a loss-based congestion control
   algorithm.  Therefore, CUBIC, which is designed to be more aggressive
   than Standard TCP in fast and long distance networks, can fill large
   drop-tail buffers more quickly than Standard TCP.  In this case,
   proper queue sizing and management [RFC7567] could be used to reduce
   the packet queueing delay.

5.5.  Protection against Congestion Collapse

   With regard to the potential of causing congestion collapse, CUBIC
   behaves like standard TCP since CUBIC modifies only the window
   adjustment algorithm of TCP.  Thus, it does not modify the ACK
   clocking and Timeout behaviors of Standard TCP.

5.6.  Fairness within the Alternative Congestion Control Algorithm.

   CUBIC ensures convergence of competing CUBIC flows with the same RTT
   in the same bottleneck links to an equal bandwidth share.  When
   competing flows have different RTTs, their bandwidth shares are
   linearly proportional to the inverse of their RTT ratios.  This is
   true independent of the level of statistical multiplexing in the
   link.

5.7.  Performance with Misbehaving Nodes and Outside Attackers

   This is not considered in the current CUBIC.

5.8.  Behavior for Application-Limited Flows

   CUBIC does not raise its congestion window size if the flow is
   currently limited by the application instead of the congestion
   window.  In cases of idle periods, t in Eq. 1 MUST NOT include the
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   idle time; otherwise, W_cubic(t) might be very high after restarting
   from a long idle time.

5.9.  Responses to Sudden or Transient Events

   In case that there is a sudden congestion, a routing change, or a
   mobility event, CUBIC behaves the same as Standard TCP.

5.10.  Incremental Deployment

   CUBIC requires only the change of TCP senders, and does not require
   any assistant of routers.

6.  Security Considerations

   This proposal makes no changes to the underlying security of TCP.

7.  IANA Considerations

   There are no IANA considerations regarding this document.
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