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Abstract

Spurious retransmission timeouts cause suboptimal TCP performance because they often
result in unnecessary retransmission of the last window of data. This document describes
the F-RTO detection algorithm for detecting spurious TCP retransmission timeouts. F-
RT O is a TCP sender-only algorithm that does not require any TCP options to operate.
After retransmitting the first unacknowledged segment triggered by a timeout, the F-RTO
algorithm of the TCP sender monitors the incoming acknowledgments to determine
whether the timeout was spurious. It then decides whether to send new segments or
retransmit unacknowledged segments. The algorithm effectively helps to avoid additional
unnecessary retransmissions and thereby improves TCP performance in the case of a
spurious timeout.
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1. Introduction

The Transmission Control Protocol (TCP) [Pos81] has two methods for triggering
retransmissions. First, the TCP sender relies on incoming duplicate ACKs, which indicate
that the receiver is missing some of the data. After a required number of successive
duplicate ACKs have arrived at the sender, it retransmits the first unacknowledged segment
[APS99] and continues with a loss recovery algorithm such as NewReno [FHG04] or
SACK-based loss recovery [BAFW03]. Second, the TCP sender maintains a
retransmission timer which triggers retransmission of segments, if they hav e not been
acknowledged before the retransmission timeout (RTO) expires. When the retransmission
timeout occurs, the TCP sender enters the RTO recovery where the congestion window is
initialized to one segment and unacknowledged segments are retransmitted using the slow-
start algorithm. The retransmission timer is adjusted dynamically, based on the measured
round-trip times [PA00].

It has been pointed out that the retransmission timer can expire spuriously and cause
unnecessary retransmissions when no segments have been lost [LK00, GL02, LM03].
After a spurious retransmission timeout, the late acknowledgments of the original segments
arrive at the sender, usually triggering unnecessary retransmissions of a whole window of
segments during the RTO recovery. Furthermore, after a spurious retransmission timeout, a
conventional TCP sender increases the congestion window on each late acknowledgment in
slow start. This injects a large number of data segments into the network within one round-
trip time, thus violating the packet conservation principle [Jac88].

There are a number of potential reasons for spurious retransmission timeouts. First, some
mobile networking technologies involve sudden delay spikes on transmission because of
actions taken during a hand-off. Second, a hand-off may take place from a low latency
path to a high latency path, suddenly increasing the round-trip time beyond the current
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RT O value. Third, on a low-bandwidth link the arrival of competing traffic (possibly with
higher priority), or some other change in available bandwidth, can cause a sudden increase
of the round-trip time. This may trigger a spurious retransmission timeout. A persistently
reliable link layer can also cause a sudden delay when a data frame and several
retransmissions of it are lost for some reason. This document does not distinguish between
the different causes of such a delay spike. Rather, it discusses the spurious retransmission
timeouts caused by a delay spike in general.

This document describes the F-RTO detection algorithm. It is based on the detection
mechanism of the "Forward RTO-Recovery" (F-RTO) algorithm [SKR03] that is used for
detecting spurious retransmission timeouts and thus avoids unnecessary retransmissions
following the retransmission timeout. When the timeout is not spurious, the F-RTO
algorithm reverts back to the conventional RTO recovery algorithm, and therefore has
similar behavior and performance. In contrast to alternative algorithms proposed for
detecting unnecessary retransmissions (Eifel [LK00], [LM03] and DSACK-based
algorithms [BA04]), F-RTO does not require any TCP options for its operation, and it can
be implemented by modifying only the TCP sender. The Eifel algorithm uses TCP
timestamps [BBJ92] for detecting a spurious timeout upon arrival of the first
acknowledgment after the retransmission. The DSACK-based algorithms require that the
TCP Selective Acknowledgment Option [MMFR96], with the DSACK extension
[FMMP00], is in use. With DSACK, the TCP receiver can report if it has received a
duplicate segment, enabling the sender to detect afterwards whether it has retransmitted
segments unnecessarily. The F-RTO algorithm only attempts to detect and avoid
unnecessary retransmissions after an RTO. Eifel and DSACK can also be used for
detecting unnecessary retransmissions caused by other events, such as packet reordering.

When an RTO expires, the F-RTO sender retransmits the first unacknowledged segment as
usual [APS99]. Deviating from the normal operation after a timeout, it then tries to
transmit new, previously unsent data for the first acknowledgment that arrives after the
timeout, given that the acknowledgment advances the window. If the second
acknowledgment that arrives after the timeout advances the window (i.e., acknowledges
data that was not retransmitted), the F- RTO sender declares the timeout spurious and exits
the RTO recovery. Howev er, if either of these two acknowledgments is a duplicate ACK,
there will not be sufficient evidence of a spurious timeout. Therefore, the F-RTO sender
retransmits the unacknowledged segments in slow start similarly to the traditional
algorithm.

With a SACK-enhanced version of the F-RTO algorithm, spurious timeouts may be
detected even if duplicate ACKs arrive after an RTO retransmission. Even though this
document only specifies F-RTO algorithm for TCP, the algorithm can also be applied to the
Stream Control Transmission Protocol (SCTP) [Ste00] that has acknowledgment and
packet retransmission concepts similar to TCP. Considerations on applying F-RTO for
SCTP are discussed in RFC 4138 [SK05].

This document is organized as follows. Section 2 describes the basic F-RTO algorithm,
and the SACK-enhanced F-RTO algorithm is given in Section 3. Section 4 discusses the
possible actions to be taken after detecting a spurious RTO and Section 5 discusses the
security considerations.
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1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119] and indicate
requirement levels for protocols.

2. Basic F-RTO Algorithm

A timeout is considered spurious if it would have been avoided had the sender waited
longer for an acknowledgment to arrive [LM03]. F-RTO affects the TCP sender behavior
only after a retransmission timeout. Otherwise, the TCP behavior remains the same.
When the RTO expires, the F-RTO algorithm monitors incoming acknowledgments and if
the TCP sender gets an acknowledgment for a segment that was not retransmitted due to
timeout, the F-RTO algorithm declares a timeout spurious. The actions taken in response
to a spurious timeout are not specified in this document, but we discuss some alternatives
in Section 4. This section introduces the algorithm and then discusses the different steps of
the algorithm in more detail.

Following the practice used with the Eifel Detection algorithm [LM03], we use the
"SpuriousRecovery" variable to indicate whether the retransmission is declared spurious by
the sender. This variable can be used as an input for a corresponding response algorithm.
With F-RTO, the value of SpuriousRecovery can be either SPUR_TO (indicating a
spurious retransmission timeout) or FALSE (indicating that the timeout is not declared
spurious), and the TCP sender should follow the conventional RTO recovery algorithm.

2.1. The Algorithm

A TCP sender implementing the basic F-RTO algorithm MUST take the following steps
after the retransmission timer expires. If the retransmission timer expires again during the
execution of the F-RTO algorithm, the TCP sender MUST re-start the algorithm processing
from step 1. If the sender implements some loss recovery algorithm other than Reno or
NewReno [FHG04], the F-RTO algorithm SHOULD NOT be entered when earlier fast
recovery is underway.

The F-RTO algorithm takes different actions based on whether an incoming
acknowledgement advances the cumulative acknowledgement point for an received in-
order segment, or whether it is a duplicate acknowledgement to indicate an out-of-order
segment. Duplicate acknowledgement is defined in [APB07]. The F-RTO algorithm does
not specify actions for receiving a segment that does not acknowledge new data but is not a
duplicate acknowledgement. The TCP sender SHOULD ignore such segments and wait for
a segment that either acknowledges new data or is a duplicate acknowledgment.

1) When RTO expires, retransmit the first unacknowledged segment and set
SpuriousRecovery to FALSE. Also, store the highest sequence number
transmitted so far in variable "recover".
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2) When the first acknowledgment after the RTO retransmission arrives at the TCP
sender, the TCP sender chooses one of the following actions, depending on
whether the ACK advances the window or whether it is a duplicate ACK.

a) If the acknowledgment is a duplicate ACK OR the Acknowledgement field
covers "recover" but not more than "recover" OR the acknowledgment
does not acknowledge all of the data that was retransmitted in step 1,
revert to the conventional RTO recovery and continue by retransmitting
unacknowledged data in slow start. Do not enter step 3 of this
algorithm. The SpuriousRecovery variable remains as FALSE.

b) Else, if the acknowledgment advances the window AND the
Acknowledgement field does not cover "recover", transmit up to two
new (previously unsent) segments and enter step 3 of this algorithm. If
the TCP sender does not have enough unsent data, it can send only one
segment. In addition, the TCP sender MAY override the Nagle algorithm
[Nag84] and immediately send a segment if needed. Note that sending
two segments in this step is allowed by TCP congestion control
requirements [APS99]: An F-RTO TCP sender simply chooses different
segments to transmit.

If the TCP sender does not have any new data to send, or the advertised
window prohibits new transmissions, the recommended action is to skip
step 3 of this algorithm and continue with slow start retransmissions,
following the conventional RTO recovery algorithm. However,
alternative ways of handling the window-limited cases that could result
in better performance are discussed in Appendix A.

3) When the second acknowledgment after the RTO retransmission arrives at the TCP
sender, the TCP sender either declares the timeout spurious, or starts
retransmitting the unacknowledged segments.

a) If the acknowledgment is a duplicate ACK, set the congestion window to no
more than 3 * MSS, and continue with the slow start algorithm
retransmitting unacknowledged segments. The congestion window can
be set to 3 * MSS, because two round-trip times have elapsed since the
RT O, and a conventional TCP sender would have increased cwnd to 3
during the same time. Leave SpuriousRecovery set to FALSE.

b) If the acknowledgment advances the window (i.e., if it acknowledges data
that was not retransmitted after the timeout), declare the timeout
spurious, set SpuriousRecovery to SPUR_TO, and set the value of the
"recover" variable to SND.UNA (the oldest unacknowledged sequence
number [Pos81]).

2.2. Discussion

The F-RTO sender takes cautious actions when it receives duplicate acknowledgments after
a retransmission timeout. Because duplicate ACKs may indicate that segments have been
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lost, reliably detecting a spurious timeout is difficult due to the lack of additional
information. Therefore, it is prudent to follow the conventional TCP recovery in those
cases.

If the first acknowledgment after the RTO retransmission covers the "recover" point at
algorithm step (2a), there is not enough evidence that a non-retransmitted segment has
arrived at the receiver after the timeout. This is a common case when a fast retransmission
is lost and has been retransmitted again after an RTO, while the rest of the unacknowledged
segments were successfully delivered to the TCP receiver before the retransmission
timeout. Therefore, the timeout cannot be declared spurious in this case.

If the first acknowledgment after the RTO retransmission does not acknowledge all of the
data that was retransmitted in step 1, the TCP sender reverts to the conventional RTO
recovery. Otherwise, a malicious receiver acknowledging partial segments could cause the
sender to declare the timeout spurious in a case where data was lost.

The TCP sender is allowed to send two new segments in algorithm branch (2b) because the
conventional TCP sender would transmit two segments when the first new ACK arrives
after the RTO retransmission. If sending new data is not possible in algorithm branch (2b),
or if the receiver window limits the transmission, the TCP sender has to send something in
order to prevent the TCP transfer from stalling. If no segments were sent, the pipe between
sender and receiver might run out of segments, and no further acknowledgments would
arrive. Therefore, in the window-limited case, the recommendation is to revert to the
conventional RTO recovery with slow start retransmissions. Appendix A discusses some
alternative solutions for window-limited situations.

If the retransmission timeout is declared spurious, the TCP sender sets the value of the
"recover" variable to SND.UNA in order to allow fast retransmit [FHG04]. The "recover"
variable was proposed for avoiding unnecessary, multiple fast retransmits when RTO
expires during fast recovery with NewReno TCP. Because the F-RTO sender retransmits
only the segment that triggered the timeout, the problem of unnecessary multiple fast
retransmits [FHG04] cannot occur. Therefore, if three duplicate ACKs arrive at the sender
after the timeout, they probably indicate a packet loss, and thus fast retransmit should be
used to allow efficient recovery. If there are not enough duplicate ACKs arriving at the
sender after a packet loss, the retransmission timer expires again and the sender enters step
1 of this algorithm.

When the timeout is declared spurious, the TCP sender cannot detect whether the
unnecessary RTO retransmission was lost. In principle, the loss of the RTO retransmission
should be taken as a congestion signal. Thus, there is a small possibility that the F-RTO
sender will violate the congestion control rules, if it chooses to fully revert congestion
control parameters after detecting a spurious timeout. The Eifel detection algorithm has a
similar property, while the DSACK option can be used to detect whether the retransmitted
segment was successfully delivered to the receiver.

The F-RTO algorithm has a side-effect on the TCP round-trip time measurement. Because
the TCP sender can avoid most of the unnecessary retransmissions after detecting a
spurious timeout, the sender is able to take round-trip time samples on the delayed
segments. If the regular RTO recovery was used without TCP timestamps, this would not
be possible due to the retransmission ambiguity. As a result, the RTO is likely to have
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more accurate and larger values with F-RTO than with the regular TCP after a spurious
timeout that was triggered due to delayed segments. We believe this is an advantage in
networks that are prone to delay spikes.

There are some situations where the F-RTO algorithm may not avoid unnecessary
retransmissions after a spurious timeout. If packet reordering or packet duplication occurs
on the segment that triggered the spurious timeout, the F-RTO algorithm may not detect the
spurious timeout due to incoming duplicate ACKs. Additionally, if a spurious timeout
occurs during fast recovery, the F-RTO algorithm often cannot detect the spurious timeout
because the segments that were transmitted before the fast recovery trigger duplicate
ACKs. However, we consider these cases rare, and note that in cases where F-RTO fails to
detect the spurious timeout, it retransmits the unacknowledged segments in slow start, and
thus performs similarly to the regular RTO recovery.

3. SACK-Enhanced Version of the F-RTO Algorithm

This section describes an alternative version of the F-RTO algorithm that uses the TCP
Selective Acknowledgment Option [MMFR96]. By using the SACK option, the TCP
sender detects spurious timeouts in most of the cases when packet reordering or packet
duplication is present. If the SACK blocks acknowledge new data that was not transmitted
after the RTO retransmission, the sender may declare the timeout spurious, even when
duplicate ACKs follow the RTO.

Given that the TCP Selective Acknowledgment Option [MMFR96] is enabled for a TCP
connection, a TCP sender MAY implement the SACK-enhanced F-RTO algorithm. If the
sender applies the SACK-enhanced F-RTO algorithm, it MUST follow the steps below.
This algorithm SHOULD NOT be applied if the TCP sender is already in SACK loss
recovery when retransmission timeout occurs.

The steps of the SACK-enhanced version of the F-RTO algorithm are as follows. If the
retransmission timer expires again during the execution of the SACK-enhanced F-RTO
algorithm, the TCP sender MUST re-start the algorithm processing from step 1.

1) When the RTO expires, retransmit the first unacknowledged segment and set
SpuriousRecovery to FALSE. Set variable "RecoveryPoint" to indicate the
highest segment transmitted so far. Following the recommendation in SACK
specification [MMFR96], reset the SACK scoreboard.

2) Wait until the acknowledgment of the data retransmitted due to the timeout arrives at
the sender. If duplicate ACKs arrive before the cumulative acknowledgment for
retransmitted data, adjust the scoreboard according to the incoming SACK
information. Stay in step 2 and wait for the next new acknowledgment. If RT O
expires again, go to step 1 of the algorithm.

a) if the Cumulative Acknowledgement field covers "RecoveryPoint" but not
more than "RecoveryPoint", revert to the conventional RTO recovery and
set the congestion window to no more than 2 * MSS, like a regular TCP
would do. Do not enter step 3 of this algorithm.
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b) else, if the Cumulative Acknowledgement field does not cover
"RecoveryPoint" but is larger than SND.UNA, transmit up to two new
(previously unsent) segments and proceed to step 3. If the TCP sender is
not able to transmit any previously unsent data -- either due to receiver
window limitation or because it does not have any new data to send --
the recommended action is to refrain from entering step 3 of this
algorithm. Rather, continue with slow start retransmissions following
the conventional RTO recovery algorithm.

It is also possible to apply some of the alternatives for handling window-
limited cases discussed in Appendix A.

3) The next acknowledgment arrives at the sender. Either a duplicate ACK or a new
cumulative ACK (advancing the window) applies in this step. Other types of
ACKs are ignored without any action.

a) if the Cumulative Acknowledgement field or a SACK block covers more than
"RecoveryPoint", set the congestion window to no more than 3 * MSS
and proceed with the conventional RTO recovery, retransmitting
unacknowledged segments. Take this branch also when the
acknowledgment is a duplicate ACK and it does not acknowledge any
new, previously unacknowledged data below "RecoveryPoint" in the
SACK blocks. Leave SpuriousRecovery set to FALSE.

b) if the Cumulative Acknowledgement field or a SACK block in the ACK does
not cover more than "RecoveryPoint" AND it acknowledges data that
was not acknowledged earlier (either with cumulative acknowledgment
or using SACK blocks), declare the timeout spurious and set
SpuriousRecovery to SPUR_TO. The retransmission timeout can be
declared spurious, because the segment acknowledged with this ACK
was transmitted before the timeout.

If there are unacknowledged holes between the received SACK blocks, those segments
are retransmitted similarly to the conventional SACK recovery algorithm [BAFW03].
If the algorithm exits with SpuriousRecovery set to SPUR_TO, "RecoveryPoint" is set
to SND.UNA, thus allowing fast recovery on incoming duplicate acknowledgments.

The SACK enhanced algorithm works on the same principle as the basic algorithm, but
by utilizing the additional information from the SACK option. When a genuine
retransmission timeout occurs during a steady state of a connection, it can be assumed
that there are no segments left in the pipe. Otherwise, the acknowledgments triggered
by these segments would have triggered the SACK loss recovery or transmission of new
segments. Therefore, if the F-RTO sender receives acknowledgements for segments
transmitted before the retransmission timeout in response to the two new segments sent
at the algorithm step 2, the normal operation of TCP has been just delayed, and the
retransmission timeout is considered spurious. Note that this reasoning works only
when the TCP sender is not in SACK loss recovery at the time the retransmission
timeout occurs.
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4. Taking Actions after Detecting Spurious RTO

Upon a retransmission timeout, a conventional TCP sender assumes that outstanding
segments are lost and starts retransmitting the unacknowledged segments. When the
retransmission timeout is detected to be spurious, the TCP sender should not continue
retransmitting based on the timeout. For example, if the sender was in congestion
avoidance phase transmitting new, previously unsent segments, it should continue
transmitting previously unsent segments in congestion avoidance.

There are currently two alternatives specified for a spurious timeout response algorithm,
the Eifel Response Algorithm [LG04], and an algorithm for adapting the retransmission
timeout after a spurious RTO [BBA06]. If no specific response algorithm is implemented,
the TCP SHOULD respond to spurious timeout conservatively, applying the TCP
congestion control specification [APS99]. Different response algorithms for spurious
retransmission timeouts have been analyzed in some research papers [GL03, Sar03] and
IETF documents [SL03].

5. Evaluation of RFC 4138 and Differences to this Document

F-RTO was first specified in an Experimental RFC 4138 that has been implemented in a
number of operating systems since it was published. Gained experience has been
documented in a separate document [KYHS07], and can be summarized as follows.

If the TCP sender employs F-RTO, it is able to detect spurious RTOs and avoid the
unnecessary retransmission of the whole window of data. Because F-RTO avoids the
unnecessary retransmissions after a spurious RTO, it is able to adhere to the packet
conservation principle, unlike a regular TCP that enters the slow-start recovery
unnecessarily an inappropriately restarts the ACK clock while there are segments
outstanding in the network. When a spurious RTO has been detected, a sender can select an
appropriate congestion control response instead of setting the congestion window to one
segment. Because F-RTO avoids unnecessary retransmissions, it is able to take the RTT of
the delayed segments into account when calculating the RTO estimate, which may help in
avoiding further spurious retransmission timeouts.

Experimental results with the basic F-RTO hav e been reported in an emulated network
using a Linux implementation [SKR03]. Also different congestion control responses along
with the SACK-enhanced version of F-RTO were tested in a similar environment [Sar03].
There are publications analyzing F-RTO performance over commercial W-CDMA
networks, and in an emulated HSDPA network [Yam05, Hok05]. Also Microsoft reported
positive experiences with their implementation of F-RTO in the IETF-68 meeting.

It is known that some spurious RTOs may remain undetected by F-RTO if duplicate
acknowledgements arrive at the sender immediately after the spurious RTO, for example
due to packet reordering or packet loss. There are rare corner cases where F-RTO could
"hide" a packet loss and therefore lead to inappropriate behavior with non-conservative
congestion control response: first, if a massive packet reordering occurred so that the
acknowledgement of RTO retransmission arrived at the sender before the
acknowledgments of original transmissions, the sender might not detect the loss of the
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segment that triggered the RTO. Second, a malicious receiver could lead F-RTO to make a
wrong conclusion after an RTO by acknowledging segments it has not received. Such
receiver would, however, risk breaking the consistency of the TCP state between the sender
and receiver, causing the connection to become unusable, which cannot be of any benefit to
the receiver. Therefore we believe it is not likely that receivers would start employing such
tricks in a significant scale. Finally, loss of the unnecessary RTO retransmission cannot be
detected without using some explicit acknowledgement scheme such as DSACK. This is
common to the other mechanisms for detecting spurious RTO, as well as to regular TCP
that does not use DSACK. We note that if the congestion control response to spurious RTO
is conservative enough, the above corner cases do not cause problems due to increased
congestion.

6. Security Considerations

The main security threat regarding F-RTO is the possibility that a receiver could mislead
the sender into setting too large a congestion window after an RTO. There are two possible
ways a malicious receiver could trigger a wrong output from the F-RTO algorithm. First,
the receiver can acknowledge data that it has not received. Second, it can delay
acknowledgment of a segment it has received earlier, and acknowledge the segment after
the TCP sender has been deluded to enter algorithm step 3.

If the receiver acknowledges a segment it has not really received, the sender can be led to
declare spurious timeout in the F-RTO algorithm, step 3. However, because the sender will
have an incorrect state, it cannot retransmit the segment that has never reached the receiver.
Therefore, this attack is unlikely to be useful for the receiver to maliciously gain a larger
congestion window.

A common case for a retransmission timeout is that a fast retransmission of a segment is
lost. If all other segments have been received, the RTO retransmission causes the whole
window to be acknowledged at once. This case is recognized in F-RTO algorithm branch
(2a). However, if the receiver only acknowledges one segment after receiving the RTO
retransmission, and then the rest of the segments, it could cause the timeout to be declared
spurious when it is not. Therefore, it is suggested that, when an RTO expires during the
fast recovery phase, the sender would not fully revert the congestion window even if the
timeout was declared spurious. Instead, the sender would reduce the congestion window to
1.

If there is more than one segment missing at the time of a retransmission timeout, the
receiver does not benefit from misleading the sender to declare a spurious timeout because
the sender would have to go through another recovery period to retransmit the missing
segments, usually after an RTO has elapsed.
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Appendix

A. Discussion of Window-Limited Cases

When the advertised window limits the transmission of two new previously unsent
segments, or there are no new data to send, it is recommended in F-RTO algorithm step
(2b) that the TCP sender continue with the conventional RTO recovery algorithm. The
disadvantage is that the sender may continue unnecessary retransmissions due to possible
spurious timeout. This section briefly discusses the options that can potentially improve
performance when transmitting previously unsent data is not possible.

- The TCP sender could reserve an unused space of a size of one or two segments in the
advertised window to ensure the use of algorithms such as F-RTO or Limited
Transmit [ABF01] in receiver window-limited situations. On the other hand, while
doing this, the TCP sender should ensure that the window of outstanding segments
is large enough for proper utilization of the available pipe.

- Use additional information if available, e.g., TCP timestamps with the Eifel Detection
algorithm, for detecting a spurious timeout. However, Eifel detection may yield
different results from F-RTO when ACK losses and an RTO occur within the same
round-trip time [SKR03].

- Retransmit data from the tail of the retransmission queue and continue with step 3 of
the F-RTO algorithm. It is possible that the retransmission will be made
unnecessarily. Furthermore, the operation of the SACK-based F-RTO algorithm
would need to consider this case separately, to not use the retransmitted segment to
indicate spurious timeout. Given these considerations, this option is not
recommended.

- Send a zero-sized segment below SND.UNA, similar to TCP Keep-Alive probe, and
continue with step 3 of the F-RTO algorithm. Because the receiver replies with a
duplicate ACK, the sender is able to detect whether the timeout was spurious from
the incoming acknowledgment. This method does not send data unnecessarily, but
it delays the recovery by one round-trip time in cases where the timeout was not
spurious. Therefore, this method is not encouraged.

- In receiver-limited cases, send one octet of new data, regardless of the advertised
window limit, and continue with step 3 of the F-RTO algorithm. It is possible that
the receiver will have free buffer space to receive the data by the time the segment
has propagated through the network, in which case no harm is done. If the
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receiver is not capable of receiving the segment, it rejects the segment and sends a
duplicate ACK.

B. List of Changes

Changes between different document versions are summarized below, apart from minor
editing and language improvements.

Changes from draft-ietf-tcpm-rfc4138bis-00:

* Added back the original SACK-algorithm from RFC 4138 after the common feedback to
have the SACK-algorithm in the document. Clarified the algorithm a bit, and added one
paragraph of description of the basic idea of the algorithm.

* Clarified behavior on multiple timeouts.

* Added a paragraph on acknowledgements that do not acknowledge new data but are not
duplicate acknowledgements

Changes from RFC 4138:

* Removed description of the SACK-enhanced algorithm

* Removed SCTP considerations

* Removed earlier Appendix sections, except Appendix C from RFC 4138, which is now
Appendix A

* Clarified text about the possible response algorithms

* Added section that summarizes the evaluation of RFC 4138
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