Network Working Group Request for Comments: 4868 Category: Standards Track S. Kelly Aruba Networks S. Frankel NIST May 2007

Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The IETF Trust (2007).

Abstract

This specification describes the use of Hashed Message Authentication Mode (HMAC) in conjunction with the SHA-256, SHA-384, and SHA-512 algorithms in IPsec. These algorithms may be used as the basis for data origin authentication and integrity verification mechanisms for the Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Key Exchange Protocol (IKE), and IKEv2 protocols, and also as Pseudo-Random Functions (PRFs) for IKE and IKEv2. Truncated output lengths are specified for the authentication-related variants, with the corresponding algorithms designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-256. The PRF variants are not truncated, and are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-HMAC-SHA-512.

Kelly & Frankel

Standards Track

[Page 1]

Table of Contents

1. Introduction	. 3
2. The HMAC-SHA-256+ Algorithms	. 3
2.1. Keying Material	. 3
2.1.1. Data Origin Authentication and Integrity	
Verification Usage	. 4
2.1.2. Pseudo-Random Function (PRF) Usage	
2.1.3. Randomness and Key Strength	
2.1.4. Key Distribution	
2.1.5. Refreshing Keys	
2.2. Padding	
2.3. Truncation	• •
2.4. Using HMAC-SHA-256+ as PRFs in IKE and IKEv2	
-	• /
2.5. Interactions with the ESP, IKE, or IKEv2 Cipher	7
Mechanisms	
2.6. HMAC-SHA-256+ Parameter Summary	
2.7. Test Vectors	
2.7.1. PRF Test Vectors	
2.7.2. Authenticator Test Vectors	
3. Security Considerations	
3.1. HMAC Key Length vs Truncation Length	
	. 17
3.1. HMAC Key Length vs Truncation Length	. 17 . 18
3.1. HMAC Key Length vs Truncation Length	. 17 . 18 . 19
3.1. HMAC Key Length vs Truncation Length	. 17 . 18 . 19 . 19

Kelly & Frankel Standards Track

[Page 2]

1. Introduction

This document specifies the use of SHA-256, SHA-384, and SHA-512 [SHA2-1] combined with HMAC [HMAC] as data origin authentication and integrity verification mechanisms for the IPsec AH [AH], ESP [ESP], IKE [IKE], and IKEv2 [IKEv2] protocol. Output truncation is specified for these variants, with the corresponding algorithms designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-256. These truncation lengths are chosen in accordance with the birthday bound for each algorithm.

This specification also describes untruncated variants of these algorithms as Pseudo-Random Functions (PRFs) for use with IKE and IKEv2, and those algorithms are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-HMAC-SHA-512. For ease of reference, these PRF algorithms and the authentication variants described above are collectively referred to below as "the HMAC-SHA-256+ algorithms".

The goal of the PRF variants are to provide secure pseudo-random functions suitable for generation of keying material and other protocol-specific numeric quantities, while the goal of the authentication variants is to ensure that packets are authentic and cannot be modified in transit. The relative security of HMAC-SHA-256+ when used in either case is dependent on the distribution scope and unpredictability of the associated secret key. If the key is unpredictable and known only by the sender and recipient, these algorithms ensure that only parties holding an identical key can derive the associated values.

2. The HMAC-SHA-256+ Algorithms

[SHA2-1] and [SHA2-2] describe the underlying SHA-256, SHA-384, and SHA-512 algorithms, while [HMAC] describes the HMAC algorithm. The HMAC algorithm provides a framework for inserting various hashing algorithms such as SHA-256, and [SHA256+] describes combined usage of these algorithms. The following sections describe the various characteristics and requirements of the HMAC-SHA-256+ algorithms when used with IPsec.

2.1. Keying Material

Requirements for keying material vary depending on whether the algorithm is functioning as a PRF or as an authentication/integrity mechanism. In the case of authentication/integrity, key lengths are fixed according to the output length of the algorithm in use. In the

Kelly & Frankel

Standards Track

[Page 3]

case of PRFs, key lengths are variable, but guidance is given to ensure interoperability. These distinctions are described further below.

Before describing key requirements for each usage, it is important to clarify some terms we use below:

- Block size: the size of the data block the underlying hash algorithm operates upon. For SHA-256, this is 512 bits, for SHA-384 and SHA-512, this is 1024 bits.
- Output length: the size of the hash value produced by the underlying hash algorithm. For SHA-256, this is 256 bits, for SHA-384 this is 384 bits, and for SHA-512, this is 512 bits.
- Authenticator length: the size of the "authenticator" in bits. This only applies to authentication/integrity related algorithms, and refers to the bit length remaining after truncation. In this specification, this is always half the output length of the underlying hash algorithm.

2.1.1. Data Origin Authentication and Integrity Verification Usage

HMAC-SHA-256+ are secret key algorithms. While no fixed key length is specified in [HMAC], this specification requires that when used as an integrity/authentication algorithm, a fixed key length equal to the output length of the hash functions MUST be supported, and key lengths other than the output length of the associated hash function MUST NOT be supported.

These key length restrictions are based in part on the recommendations in [HMAC] (key lengths less than the output length decrease security strength, and keys longer than the output length do not significantly increase security strength), and in part because allowing variable length keys for IPsec authenticator functions would create interoperability issues.

2.1.2. Pseudo-Random Function (PRF) Usage

IKE and IKEv2 use PRFs for generating keying material and for authentication of the IKE Security Association. The IKEv2 specification differentiates between PRFs with fixed key sizes and those with variable key sizes, and so we give some special guidance for this below.

Kelly & Frankel

Standards Track

[Page 4]

When a PRF described in this document is used with IKE or IKEv2, it is considered to have a variable key length, and keys are derived in the following ways (note that we simply reiterate that which is specified in [HMAC]):

- o If the length of the key is exactly the algorithm block size, use it as-is.
- o If the key is shorter than the block size, lengthen it to exactly the block size by padding it on the right with zero bits.
 However, note that [HMAC] strongly discourages a key length less than the output length. Nonetheless, we describe handling of shorter lengths here in recognition of shorter lengths typically chosen for IKE or IKEv2 pre-shared keys.
- o If the key is longer than the block size, shorten it by computing the corresponding hash algorithm output over the entire key value, and treat the resulting output value as your HMAC key. Note that this will always result in a key that is less than the block size in length, and this key value will therefore require zero-padding (as described above) prior to use.
- 2.1.3. Randomness and Key Strength

[HMAC] discusses requirements for key material, including a requirement for strong randomness. Therefore, a strong pseudo-random function MUST be used to generate the required key for use with HMAC-SHA-256+. At the time of this writing there are no published weak keys for use with any HMAC-SHA-256+ algorithms.

2.1.4. Key Distribution

[ARCH] describes the general mechanism for obtaining keying material when multiple keys are required for a single SA (e.g., when an ESP SA requires a key for confidentiality and a key for authentication). In order to provide data origin authentication and integrity verification, the key distribution mechanism must ensure that unique keys are allocated and that they are distributed only to the parties participating in the communication.

2.1.5. Refreshing Keys

Currently, there are no practical attacks against the algorithms recommended here, and especially against the key sizes recommended here. However, as noted in [HMAC] "...periodic key refreshment is a fundamental security practice that helps against potential weaknesses of the function and keys, and limits the damage of an exposed key".

Kelly & Frankel

Standards Track

[Page 5]

Putting this into perspective, this specification requires 256, 384, or 512-bit keys produced by a strong PRF for use as a MAC. A brute force attack on such keys would take longer to mount than the universe has been in existence. On the other hand, weak keys (e.g., dictionary words) would be dramatically less resistant to attack. It is important to take these points, along with the specific threat model for your particular application and the current state of the art with respect to attacks on SHA-256, SHA-384, and SHA-512 into account when determining an appropriate upper bound for HMAC key lifetimes.

2.2. Padding

The HMAC-SHA-256 algorithms operate on 512-bit blocks of data, while the HMAC-SHA-384 and HMAC-SHA-512 algorithms operate on 1024-bit blocks of data. Padding requirements are specified in [SHA2-1] as part of the underlying SHA-256, SHA-384, and SHA-512 algorithms, so if you implement according to [SHA2-1], you do not need to add any additional padding as far as the HMAC-SHA-256+ algorithms specified here are concerned. With regard to "implicit packet padding" as defined in [AH], no implicit packet padding is required.

2.3. Truncation

The HMAC-SHA-256+ algorithms each produce an nnn-bit value, where nnn corresponds to the output bit length of the algorithm, e.g., HMAC-SHA-nnn. For use as an authenticator, this nnn-bit value can be truncated as described in [HMAC]. When used as a data origin authentication and integrity verification algorithm in ESP, AH, IKE, or IKEv2, a truncated value using the first nnn/2 bits -- exactly half the algorithm output size -- MUST be supported. No other authenticator value lengths are supported by this specification.

Upon sending, the truncated value is stored within the authenticator field. Upon receipt, the entire nnn-bit value is computed and the first nnn/2 bits are compared to the value stored in the authenticator field, with the value of 'nnn' depending on the negotiated algorithm.

[HMAC] discusses potential security benefits resulting from truncation of the output MAC value, and in general, encourages HMAC users to perform MAC truncation. In the context of IPsec, a truncation length of nnn/2 bits is selected because it corresponds to the birthday attack bound for each of the HMAC-SHA-256+ algorithms, and it simultaneously serves to minimize the additional bits on the wire resulting from use of this facility.

Kelly & Frankel

Standards Track

[Page 6]

2.4. Using HMAC-SHA-256+ as PRFs in IKE and IKEv2

The PRF-HMAC-SHA-256 algorithm is identical to HMAC-SHA-256-128, except that variable-length keys are permitted, and the truncation step is NOT performed. Likewise, the implementations of PRF-HMAC-SHA-384 and PRF-HMAC-SHA-512 are identical to those of HMAC-SHA-384-192 and HMAC-SHA-512-256 respectively, except that again, variable-length keys are permitted, and truncation is NOT performed.

2.5. Interactions with the ESP, IKE, or IKEv2 Cipher Mechanisms

As of this writing, there are no known issues that preclude the use of the HMAC-SHA-256+ algorithms with any specific cipher algorithm.

2.6. HMAC-SHA-256+ Parameter Summary

The following table serves to summarize the various quantities associated with the HMAC-SHA-256+ algorithms. In this table, "var" stands for "variable".

+				+	
Algorithm ID	Block Size	Output Length	Trunc.	Key Length	Algorithm Type
HMAC-SHA-256-128	512	256	128	256	auth/integ
HMAC-SHA-384-192	1024	384	192	384	auth/integ
HMAC-SHA-512-256	1024	512	256	512	auth/integ
PRF-HMAC-SHA-256	512	256	(none)	var	PRF
PRF-HMAC-SHA-384	1024	384	(none)	var	PRF
PRF-HMAC-SHA-512	1024	512	(none)	var	PRF
+	+			+	++

2.7. Test Vectors

The following test cases include the key, the data, and the resulting authenticator, and/or PRF values for each algorithm. The values of keys and data are either ASCII character strings (surrounded by double quotes) or hexadecimal numbers. If a value is an ASCII character string, then the HMAC computation for the corresponding test case DOES NOT include the trailing null character ('0') of the string. The computed HMAC values are all hexadecimal numbers.

Kelly & Frankel

Standards Track

[Page 7]

2.7.1. PRF Test Vectors

These test cases were borrowed from RFC 4231 [HMAC-TEST]. For reference implementations of the underlying hash algorithms, see [SHA256+]. Note that for testing purposes, PRF output is considered to be simply the untruncated algorithm output.

Test Case PRF- Key =	1: 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	(20 bytes)
Data =	4869205468657265	("Hi There")
PRF-HMAC-SHA-2	56 = b0344c61d8db38535ca8afceaf0bf 881dc200c9833da726e9376c2e32c	
PRF-HMAC-SHA-3	<pre>84 = afd03944d84895626b0825f4ab4690 15f9dadbe4101ec682aa034c7cebc9 faea9ea9076ede7f4af152e8b2fa90</pre>	59c
PRF-HMAC-SHA-5	12 = 87aa7cdea5ef619d4ff0b4241a1d66 2379f4e2ce4ec2787ad0b30545e176 daa833b7d6b8a702038b274eaea3f4 be9d914eeb61f1702e696c203a1268	cde 4e4
Test Case PRF- Key =	2: 4a656665	("Jefe")
Data =	7768617420646£2079612077616e7420 666£72206e6£7468696e673£	("what do ya want ") ("for nothing?")
PRF-HMAC-SHA-2	56 = 5bdcc146bf60754e6a04242608957 5a003f089d2739839dec58b964ec38	
PRF-HMAC-SHA-3	<pre>84 = af45d2e376484031617f78d2b58a6B 9c7ef464f5a01b47e42ec373632244 8e2240ca5e69e2c78b3239ecfab216</pre>	45e
PRF-HMAC-SHA-5	12 = 164b7a7bfcf819e2e395fbe73b56e0 87bd64222e831fd610270cd7ea2509 9758bf75c05a994a6d034f65f8f0e0 caeabla34d4a6b4b636e070a38bce	554 5fd

Kelly & Frankel Standards Track

[Page 8]

Test Case PRF- Key	3: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Data =	ddddddddddddddddddddddddd dddddddddddd
PRF-HMAC-SHA-2	56 = 773ea91e36800e46854db8ebd09181a7 2959098b3ef8c122d9635514ced565fe
PRF-HMAC-SHA-3	<pre>84 = 88062608d3e6ad8a0aa2ace014c8a86f 0aa635d947ac9febe83ef4e55966144b 2a5ab39dc13814b94e3ab6e101a34f27</pre>
PRF-HMAC-SHA-5	<pre>12 = fa73b0089d56a284efb0f0756c890be9 b1b5dbdd8ee81a3655f83e33b2279d39 bf3e848279a722c806b485a47e67c807 b946a337bee8942674278859e13292fb</pre>
Test Case PRF- Key =	4: 0102030405060708090a0b0c0d0e0f10 111213141516171819 (25 bytes)
Data =	cdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcdcdcd
PRF-HMAC-SHA-2	56 = 82558a389a443c0ea4cc819899f2083a 85f0faa3e578f8077a2e3ff46729665b
prf-hmac-sha-3	84 = 3e8a69b7783c25851933ab6290af6ca7 7a9981480850009cc5577c6e1f573b4e 6801dd23c4a7d679ccf8a386c674cffb
PRF-HMAC-SHA-5	<pre>12 = b0ba465637458c6990e5a8c5f61d4af7 e576d97ff94b872de76f8050361ee3db a91ca5c11aa25eb4d679275cc5788063 a5f19741120c4f2de2adebeb10a298dd</pre>

[Page 9]

Test Case PRF-5:				
Key =	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	aa		
	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa			
	aaaaaa	(131 bytes)		
Data =	54657374205573696e67204c617267	65 ("Test Using Large")		
	72205468616e20426c6f636b2d5369	97a ("r Than Block-Siz")		
	65204b6579202d2048617368204b65			
	204669727374	(" First")		
PRF-HMAC-SHA-2	256 = 60e431591ee0b67f0d8a26aacb	of5b77f		
	8e0bc6213728c5140546040f0e			
PRF-HMAC-SHA-3	884 = 4ece084485813e9088d2c63a04	l1bc5b4		
	4f9ef1012a2b588f3cd11f0503	3ac4c6		
	0c2ef6ab4030fe8296248df163	8£44952		
PRF-HMAC-SHA-5	512 = 80b24263c7c1a3ebb71493c1dd	l7be8b4		
	9b46d1f41b4aeec1121b013783	3f8f352		
	6b56d037e05f2598bd0fd2215d	l6a1e52		
	95e64f73f63f0aec8b915a985c	1786598		

[Page 10]

Test Case PRF-6:

Key =	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	a
	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	a
	aaaaaa	(131 bytes)
Data =	5468697320697320612074657374207	5 ("This is a test u")
	73696e672061206c617267657220746	8 ("sing a larger th")
	616e20626c6f636b2d73697a65206b6	5 ("an block-size ke")
	7920616e642061206c6172676572207	4 ("y and a larger t")
	68616e20626c6f636b2d73697a65206	4 ("han block-size d")
	6174612e20546865206b6579206e656	5 ("ata. The key nee")
	647320746f206265206861736865642	0 ("ds to be hashed ")
	6265666f7265206265696e672075736	5 ("before being use")
	642062792074686520484d414320616	c ("d by the HMAC al")
	676f726974686d2e	("gorithm.")
PRF-HMAC-SHA-2	56 = 9b09ffa71b942fcb27635fbcd5b	0e944
	bfdc63644f0713938a7f51535c3	a35e2
DDE-НМУС-СПУ-3	34 = 6617178e941f020d351e2f254e8	Fd32c
FRI IIMAC SIIA S	602420feb0b8fb9adccebb82461	
	a678cc31e799176d3860e6110c4	
		55250
PRF-HMAC-SHA-5	l2 = e37b6a775dc87dbaa4dfa9f96e5	e3ffd
	debd71f8867289865df5a32d20c	dc944
	b6022cac3c4982b10d5eeb55c3e	4de15
	134676fb6de0446065c97440fa8	c6a58

2.7.2. Authenticator Test Vectors

The following sections are test cases for ${\rm HMAC-SHA256-128}\,,$ ${\rm HMAC-}$ SHA384-192, and HMAC-SHA512-256. PRF outputs are also included for convenience. These test cases were generated using the SHA256+ reference code provided in [SHA256+].

Kelly & Frankel Standards Track

[Page 11]

RFC 4868 I	HMAC-SHA256, SHA384, and SHA512 in 1	IPsec May 2007
2.7.2.1. SHA256	Authentication Test Vectors	
Test Case AUTH Key =	H256-1: 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	(32 bytes)
Data =	4869205468657265	("Hi There")
PRF-HMAC-SHA-2	256 = 198a607eb44bfbc69903a0flcf2bb ba0aa3f3d9ae3c1c7a3b1696a0b68	
HMAC-SHA-256-3	128 = 198a607eb44bfbc69903a0f1cf2bbc	dc5
Test Case AUTH	1256-2:	
Key =	4a6566654a6566654a6566654a656665 4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe") ("JefeJefeJefeJefe")
Data =	7768617420646f2079612077616e7420 666f72206e6f7468696e673f	("what do ya want ") ("for nothing?")
PRF-HMAC-SHA-2	256 = 167f928588c5cc2eef8e3093caa0e 9ff566a14794aa61648d81621a2a4	
HMAC-SHA-256-3	128 = 167f928588c5cc2eef8e3093caa0e	87c
Test Case AUTH	1256-3:	
Key =	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	(32 bytes)
Data =	dddddddddddddddddddddddddddddddd dddddd	
	dddd	(50 bytes)
PRF-HMAC-SHA-2	256 = cdcb1220d1ecccea91e53aba3092f e549fe6ce9ed7fdc43191fbde45c3	
HMAC-SHA-256-	128 = cdcb1220d1ecccea91e53aba3092f	962

[Page 12]

RFC 4868	HMAC-SHA256, SHA384, and SHA512 in	IPsec May 2007
Test Case AU Key =	TH256-4: 0102030405060708090a0b0c0d0e0f10 1112131415161718191a1b1c1d1e1f20	(32 bytes)
Data =	cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcd	(50 bytes)
PRF-HMAC-SHA	-256 = 372efcf9b40b35c2115b1346903d2 2fced46f0846e7257bb156d3d7b30	
HMAC-SHA-256	-128 = 372efcf9b40b35c2115b1346903d2	eef4
2.7.2.2. SHA38	4 Authentication Test Vectors	
Test Case AU Key =	<pre>IH384-1: 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b</pre>	(48 bytes)
Data =	4869205468657265	("Hi There")
PRF-HMAC-SHA	-384 = b6a8d5636f5c6a7224f9977dcf7ee fb6d0c48cbdee9737a959796489bd 4c5df61d5b3297b4fb68dab9f1b58	ldbc
HMAC-SHA-384	-128 = b6a8d5636f5c6a7224f9977dcf7ee fb6d0c48cbdee973	e6c7
Test Case AU Key =	TH384-2: 4a6566654a6566654a6566654a656665 4a6566654a6566654a6566654a656665 4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe") ("JefeJefeJefeJefe") ("JefeJefeJefeJefe")
Data =	7768617420646f2079612077616e7420 666f72206e6f7468696e673f	("what do ya want ") ("for nothing?")
PRF-HMAC-SHA	-384 = 2c7353974f1842fd66d53c452ca42 b28c0b594cfb184da86a368e9b8e1 349524ca4e82400cbde0686d40337	.6f5
HMAC-SHA-384	-192 = 2c7353974f1842fd66d53c452ca42 b28c0b594cfb184d	2122

[Page 13]

Test Case AUTH Key =	384-3: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	(48 bytes)
Data =	ddddddddddddddddddddddddddddddd ddddddd	(50 bytes)
prf-hmac-sha-3	84 = 809f439be00274321d4a538652164 554a508184a0c3160353e342859700 35914a18770f9443987054944b7c4	03d
HMAC-SHA-384-1	92 = 809f439be00274321d4a538652164 554a508184a0c316	b53
Test Case AUTH	384-4:	
Key =	0102030405060708090a0b0c0d0e0f10 1112131415161718191a1b1c1d1e1f20 0a0b0c0d0e0f10111213141516171819	(48 bytes)
Data =	cdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcd	(50 bytes)
prf-hmac-sha-3	84 = 5b540085c6e6358096532b24936096 cb298f774f87bb5c2ebf182c83cc74 707fb92eab2536a5812258228bc96	428
HMAC-SHA-384-1	92 = 5b540085c6e6358096532b24936096 cb298f774f87bb5c	ed1

[Page 14]

2.7.2.3. SHA512 Authentication Test Vectors

Test Case AUTH	H512-1:	
Key =	0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	
	0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	
	0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	
	0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b	(64 bytes)
Data =	4869205468657265	("Hi There")
PRF-HMAC-SHA-5	512 = 637edc6e01dce7e6742a99451aae8	2df
	23da3e92439e590e43e761b33e910	fb8
	ac2878ebd5803f6f0b61dbce5e251	ff8
	789a4722c1be65aea45fd464e89f8	f5b
HMAC-SHA-512-2	256 = 637edc6e01dce7e6742a99451aae8	2df
	23da3e92439e590e43e761b33e910	
Test Case AUTH	1512-2:	
Key =	4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe")
- 1	4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe")
	4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe")
	4a6566654a6566654a6566654a656665	("JefeJefeJefeJefe")
Data =	7768617420646f2079612077616e7420	("what do ya want ")
Dala -	666f72206e6f7468696e673f	("for nothing?")
		(,
PRF-HMAC-SHA-5	512 = cb370917ae8a7ce28cfd1d8f4705d	
	lc173b2a9362c15df235dfb251b15	
	6aa334ae9fb9afc2184932d8695e3	
	fa0ffb93466cfcceaae38c833b7db	a38
HMAC-SHA-512-2	256 = cb370917ae8a7ce28cfd1d8f4705d	614
	1c173b2a9362c15df235dfb251b15	

Kelly & Frankel Standards Track

[Page 15]

Test Case AUTH Key =	1512-3: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	(64	bytes)
Data =	dddddddddddddddddddddddddddddddd dddddd	(50	bytes)
PRF-HMAC-SHA-5	512 = 2ee7acd783624ca9398710f3ee05ae b9f9b0510c87e49e586cc9bf961733 623c7b55cebefccf02d5581acc1c9d b1ff68a1de45509fbe4da9a4339226	d8 l5f	
HMAC-SHA-512-2	<pre>256 = 2ee7acd783624ca9398710f3ee05ae b9f9b0510c87e49e586cc9bf961733</pre>		
Test Case AUTH			
Key =	0a0b0c0d0e0f10111213141516171819 0102030405060708090a0b0c0d0e0f10 1112131415161718191a1b1c1d1e1f20 2122232425262728292a2b2c2d2e2f30 3132333435363738393a3b3c3d3e3f40	(64	bytes)
Data =	cdcdcdcdcdcdcdcdcdcdcdcdcdcdcd cdcdcdcd	(50	bytes)
PRF-HMAC-SHA-5	512 = 5e6688e5a3daec826ca32eaea224ef e700628947470e13ad01302561bab1 b8c48cbc6b807dcfbd850521a685ba 7eae4a2a2e660dc0e86b931d65503f	f5 .08 .bc	2,000,
HMAC-SHA-512-2	256 = 5e6688e5a3daec826ca32eaea224ef e700628947470e13ad01302561bab1		

[Page 16]

3. Security Considerations

In a general sense, the security provided by the HMAC-SHA-256+ algorithms is based both upon the strength of the underlying hash algorithm, and upon the additional strength derived from the HMAC construct. At the time of this writing, there are no practical cryptographic attacks against SHA-256, SHA-384, SHA-512, or HMAC. However, as with any cryptographic algorithm, an important component of these algorithms' strength lies in the correctness of the algorithm implementation, the security of the key management mechanism, the strength of the associated secret key, and upon the correctness of the implementation in all of the participating systems. This specification contains test vectors to assist in verifying the correctness of the algorithm implementation, but these in no way verify the correctness (or security) of the surrounding security infrastructure.

3.1. HMAC Key Length vs Truncation Length

There are important differences between the security levels afforded by HMAC-SHA1-96 [HMAC-SHA1] and the HMAC-SHA-256+ algorithms, but there are also considerations that are somewhat counter-intuitive. There are two different axes along which we gauge the security of these algorithms: HMAC output length and HMAC key length. If we assume the HMAC key is a well-guarded secret that can only be determined through offline attacks on observed values, and that its length is less than or equal to the output length of the underlying hash algorithm, then the key's strength is directly proportional to its length. And if we assume an adversary has no knowledge of the HMAC key, then the probability of guessing a correct MAC value for any given packet is directly proportional to the HMAC output length.

This specification defines truncation to output lengths of either 128 192, or 256 bits. It is important to note that at this time, it is not clear that HMAC-SHA-256 with a truncation length of 128 bits is any more secure than HMAC-SHA1 with the same truncation length, assuming the adversary has no knowledge of the HMAC key. This is because in such cases, the adversary must predict only those bits that remain after truncation. Since in both cases that output length is the same (128 bits), the adversary's odds of correctly guessing the value are also the same in either case: 1 in 2^128. Again, if we assume the HMAC key remains unknown to the attacker, then only a bias in one of the algorithms would distinguish one from the other. Currently, no such bias is known to exist in either HMAC-SHA1 or HMAC-SHA-256+.

Kelly & Frankel

Standards Track

[Page 17]

when viewed as PRF's, then the HMAC key length provides a direct measure of the underlying security: the longer the key, the harder it is to guess. This means that with respect to passive attacks on the HMAC key, size matters - and the HMAC-SHA-256+ algorithms provide more security in this regard than HMAC-SHA1-96.

4. IANA Considerations

This document does not specify the conventions for using SHA256+ for IKE Phase 1 negotiations, except to note that IANA has made the following IKE hash algorithm attribute assignments:

SHA2-256: 4 SHA2-384: 5 SHA2-512: 6 For IKE Phase 2 negotiations, IANA has assigned the following authentication algorithm identifiers: HMAC-SHA2-256: 5 HMAC-SHA2-384: 6 HMAC-SHA2-512: 7 For use of HMAC-SHA-256+ as a PRF in IKEv2, IANA has assigned the following IKEv2 Pseudo-random function (type 2) transform identifiers: PRF_HMAC_SHA2_256 5 PRF_HMAC_SHA2_384 6 PRF_HMAC_SHA2_512 7 For the use of HMAC-SHA-256+ algorithms for data origin authentication and integrity verification in IKEv2, ESP, or AH, IANA has assigned the following IKEv2 integrity (type 3) transform identifiers: AUTH_HMAC_SHA2_256_128 12 AUTH_HMAC_SHA2_384_192 13 AUTH_HMAC_SHA2_512_256 14

Kelly & Frankel

Standards Track

[Page 18]

5. Acknowledgements

Portions of this text were unabashedly borrowed from [HMAC-SHA1] and [HMAC-TEST]. Thanks to Hugo Krawczyk for comments and recommendations on early revisions of this document, and thanks also to Russ Housley and Steve Bellovin for various security-related comments and recommendations.

- 6. References
- 6.1. Normative References
 - [AH] Kent, S., "IP Authentication Header", RFC 4302, December 2005.
 - [ARCH] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
 - [ESP] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
 - [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.
 - [HMAC-SHA1] Madsen, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
 - [HMAC-TEST] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512", RFC 4231, December 2005.
 - [IKE] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
 - [IKEv2] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005.
 - [SHA2-1] NIST, "FIPS PUB 180-2 'Specifications for the Secure Hash Standard'", 2004 FEB, <http://csrc.nist.gov/ publications/fips/fips180-2/ fips180-2withchangenotice.pdf>.
 - [SHA256+] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms (SHA and HMAC-SHA)", RFC 4634, July 2006.

Kelly & Frankel

Standards Track

[Page 19]

6.2. Informative References

[SHA2-2] NIST, "Descriptions of SHA-256, SHA-384, and SHA-512", 2001 MAY, <http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf>.

Authors' Addresses

Scott G. Kelly Aruba Networks 1322 Crossman Ave Sunnyvale, CA 94089 US

EMail: scott@hyperthought.com

Sheila Frankel NIST Bldg. 222 Room B264 Gaithersburg, MD 20899 US

EMail: sheila.frankel@nist.gov

Kelly & Frankel

Standards Track

[Page 20]

Full Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Kelly & Frankel

Standards Track

[Page 21]