Net wor k Wor ki ng Group M Al man

Request for Comments: 5681 V. Paxson
obsol etes: 2581 | CSI
Cat egory: Standards Track E. Bl anton

Purdue University
Sept ember 2009

TCP Congestion Contro
Abst r act

Thi s docunent defines TCP's four intertw ned congestion contro
algorithms: slow start, congestion avoidance, fast retransmt, and
fast recovery. In addition, the docunent specifies how TCP shoul d
begin transm ssion after a relatively long idle period, as well as
di scussi ng various acknow edgnent generation nmethods. This docunent
obsol etes RFC 2581.

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents in effect on the date of
publication of this docunment (http://trustee.ietf.org/license-info).
Pl ease revi ew these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

Thi s docunent may contain material from|ETF Documents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
nodi fi cati ons of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may

Al man, et al. St andards Track [Page 1]

RFC 5681 TCP Congesti on Control Sept ember 2009

not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh

Table O Contents

Lo IntroduCti On ... 2
2. DefinitiONs 3
3. Congestion Control Algorithms 4
3.1. Slow Start and Congestion Avoidance 4
3.2. Fast Retransmit/Fast ReCOVEry, 8
4. Additional Considerations i, 10
4.1. Restarting Idle Connections 10
4.2. Cenerating Acknowl edgnments 11
4.3. Loss Recovery Mechanisms i 12
5. Security Considerati ONS 13
6. Changes between RFC 2001 and RFC 2581 13
7. Changes Relative to RFC 2581 i, 14
8. Acknow edgmENt S e 15
9. ReferenCeS ... 15
9.1. Normative References 15
9.2. Informative References 16
1. Introduction

Thi s docunent specifies four TCP [RFC793] congestion contro
algorithms: slow start, congestion avoi dance, fast retransnmt and
fast recovery. These algorithms were devised in [Jac88] and [Jac90].
Their use with TCP is standardized in [RFC1122]. Additional early
work in additive-increase, nultiplicative-decrease congestion contro
is given in [CJ]89].

Note that [Ste94] provides exanples of these algorithnms in action and
[W595] provi des an expl anati on of the source code for the BSD
i mpl enent ati on of these algorithmns.

In addition to specifying these congestion control algorithns, this
document specifies what TCP connections should do after a relatively
long idle period, as well as specifying and clarifying sone of the

i ssues pertaining to TCP ACK generati on.

Thi s docunent obsol etes [RFC2581], which in turn obsol eted [RFC2001].

Thi s docunment is organized as follows. Section 2 provides various
definitions that will be used throughout the docunent. Section 3
provi des a specification of the congestion control algorithms.
Section 4 outlines concerns related to the congestion contro
algorithnms and finally, section 5 outlines security considerations.

Al man, et al. St andards Track [Page 2]

RFC 5681 TCP Congesti on Control Sept ember 2009

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2. Definitions

This section provides the definition of several terns that will be
used t hroughout the renai nder of this docunent.

SEGMVENT: A segrment is ANY TCP/IP data or acknow edgnent packet (or
bot h) .

SENDER MAXI MUM SEGVENT SI ZE (SMSS): The SMSS is the size of the
| argest segnent that the sender can transmt. This value can be
based on the maxi mumtransni ssion unit of the network, the path
MIU di scovery [RFC1191, RFC4821] algorithm RMSS (see next item,
or other factors. The size does not include the TCP/IP headers
and options.

RECEI VER MAXI MUM SEGVENT S| ZE (RMSS): The RMSS is the size of the
| argest segnent the receiver is willing to accept. This is the
val ue specified in the MSS option sent by the receiver during
connection startup. O, if the MSS option is not used, it is 536
bytes [RFC1122]. The size does not include the TCP/IP headers and
options.

FULL- SI ZED SEGMVENT: A segment that contains the nmaxi num nunber of
data bytes permitted (i.e., a segnent containing SMSS bytes of
dat a) .

RECEI VER W NDOW (rwnd): The nobst recently advertised receiver w ndow.

CONGESTI ON W NDOW (cwnd): A TCP state variable that linmts the anount
of data a TCP can send. At any given time, a TCP MJST NOT send
data with a sequence nunber higher than the sum of the highest
acknow edged sequence nunber and the mni numof cwnd and rwnd.

NI TIAL WNDOW (IW: The initial windowis the size of the sender’s
congestion wi ndow after the three-way handshake is conpl eted.

LOSS WNDOW (LW : The |l oss window is the size of the congestion
wi ndow after a TCP sender detects |oss using its retransm ssion
timer.

RESTART W NDOW (RW: The restart window is the size of the congestion
wi ndow after a TCP restarts transmi ssion after an idle period (if
the slow start algorithmis used; see section 4.1 for nore
di scussi on).

Al man, et al. St andards Track [Page 3]

RFC 5681 TCP Congesti on Control Sept ember 2009

3.

3.

FLI GHT SI ZE: The anpbunt of data that has been sent but not yet
cumul ati vel y acknow edged.

DUPLI CATE ACKNOALEDGVENT: An acknow edgnent is considered a
"duplicate"” in the follow ng al gorithnms when (a) the receiver of
the ACK has outstanding data, (b) the incom ng acknow edgnent
carries no data, (c) the SYN and FIN bits are both off, (d) the
acknow edgnent nunber is equal to the greatest acknow edgnent
recei ved on the given connection (TCP.UNA from [RFC793]) and (e)
the advertised window in the incom ng acknow edgnent equal s the
advertised window in the |ast incom ng acknow edgnent.

Alternatively, a TCP that utilizes selective acknow edgnents
(SACKs) [RFC2018, RFC2883] can |leverage the SACK information to
deternmi ne when an incoming ACKis a "duplicate" (e.g., if the ACK
cont ai ns previously unknown SACK i nformation).

Congestion Control Al gorithms

This section defines the four congestion control algorithms: slow
start, congestion avoi dance, fast retransnmt, and fast recovery,

devel oped in [Jac88] and [Jac90]. |In some situations, it may be
beneficial for a TCP sender to be nobre conservative than the
algorithns all ow, however, a TCP MUST NOT be nore aggressive than the
following algorithns allow (that is, MUST NOT send data when the

val ue of cwnd conputed by the followi ng al gorithns woul d not all ow
the data to be sent).

Al so, note that the algorithnms specified in this docunent work in
terns of using loss as the signal of congestion. Explicit Congestion
Notification (ECN) could also be used as specified in [RFC3168].

1. Slow Start and Congestion Avoi dance

The sl ow start and congestion avoi dance al gorithns MJST be used by a
TCP sender to control the anpbunt of outstanding data being injected
into the network. To inplenent these algorithns, two variables are
added to the TCP per-connection state. The congestion w ndow (cwnd)
is a sender-side limt on the ampbunt of data the sender can transnit
into the network before receiving an acknow edgnent (ACK), while the
receiver’s advertised window (rwnd) is a receiver-side limt on the
amount of outstanding data. The m ni mum of cwnd and rwnd governs
data transm ssion.

Anot her state variable, the slow start threshold (ssthresh), is used
to determ ne whether the slow start or congesti on avoi dance al gorithm
is used to control data transm ssion, as discussed bel ow.

Al man, et al. St andards Track [Page 4]

RFC 5681 TCP Congesti on Control Sept ember 2009

Begi nning transm ssion into a network with unknown conditions
requires TCP to slowy probe the network to determ ne the avail abl e
capacity, in order to avoid congesting the network with an

i nappropriately large burst of data. The slow start algorithmis
used for this purpose at the beginning of a transfer, or after
repairing |oss detected by the retransmission timer. Slow start
additionally serves to start the "ACK cl ock” used by the TCP sender
to release data into the network in the slow start, congestion

avoi dance, and | oss recovery al gorithmns.

IW the initial value of cwnd, MJST be set using the follow ng
gui del i nes as an upper bound.

If SMSS > 2190 bytes:

IW= 2 * SM5S bytes and MJUST NOT be nore than 2 segments
If (SM5S > 1095 bytes) and (SMSS <= 2190 bytes):

IW= 3 * SMSS bytes and MJUST NOT be nore than 3 segments
if SMSS <= 1095 bytes:

IW= 4 * SMES bytes and MUST NOT be nore than 4 segnents

As specified in [RFC3390], the SYN ACK and the acknow edgrment of the
SYN ACK MUST NOT increase the size of the congestion w ndow.

Further, if the SYN or SYNACK is lost, the initial w ndow used by a
sender after a correctly transmtted SYN MJUST be one segnent

consi sting of at nobst SMSS byt es.

A detailed rational e and di scussion of the |Wsetting is provided in
[RFC3390] .

When initial congestion wi ndows of nore than one segnent are

i mpl enented along with Path MIU Di scovery [RFC1191], and the MSS
being used is found to be too large, the congesti on wi ndow cwnd
SHOULD be reduced to prevent large bursts of snaller segnents.
Specifically, cwnd SHOULD be reduced by the ratio of the old segnent
size to the new segnent size

The initial value of ssthresh SHOULD be set arbitrarily high (e.qg.

to the size of the largest possible advertised wi ndow), but ssthresh
MUST be reduced in response to congestion. Setting ssthresh as high
as possible allows the network conditions, rather than sone arbitrary
host Ilimt, to dictate the sending rate. 1In cases where the end
systens have a solid understanding of the network path, nore
carefully setting the initial ssthresh value may have nerit (e.g.
such that the end host does not create congestion along the path).

Al man, et al. St andards Track [Page 5]

RFC 5681 TCP Congesti on Control Sept ember 2009

The slow start algorithmis used when cwnd < ssthresh, while the
congestion avoi dance algorithmis used when cwnd > ssthresh. Wen
cwnd and ssthresh are equal, the sender may use either slow start or
congesti on avoi dance.

During slow start, a TCP increnents cwnd by at npbst SMSS bytes for
each ACK received that cunul atively acknow edges new data. Sl ow
start ends when cwnd exceeds ssthresh (or, optionally, when it
reaches it, as noted above) or when congestion is observed. While
traditionally TCP inpl ementati ons have increased cwnd by precisely
SMSS byt es upon recei pt of an ACK covering new data, we RECOMVEND
that TCP inpl enentations increase cwnd, per

cwnd += min (N, SMSS) (2)

where N is the number of previously unacknow edged bytes acknow edged
in the incomng ACK. This adjustrment is part of Appropriate Byte
Counti ng [RFC3465] and provi des robustness agai nst m sbehavi ng
receivers that nmay attenpt to induce a sender to artificially inflate
cwnd using a nmechani sm known as "ACK Division" [SCWA99]. ACK

Di vi sion consists of a receiver sending multiple ACKs for a single
TCP data segnment, each acknow edging only a portion of its data. A
TCP that increnents cwnd by SMSS for each such ACK wil |

i nappropriately inflate the anmount of data injected into the network.

During congestion avoi dance, cwnd is incremented by roughly 1 full-
sized segnent per round-trip time (RTT). Congestion avoi dance
continues until congestion is detected. The basic guidelines for

i ncrenmenting cwnd during congestion avoi dance are:

* MAY increnent cwnd by SMSS bytes
* SHOULD i ncrenent cwnd per equation (2) once per RTT
* MUST NOT increment cwnd by nore than SMSS byt es

We note that [RFC3465] allows for cwnd increases of nore than SMSS
bytes for incoming acknow edgnments during slow start on an
experimental basis; however, such behavior is not allowed as part of
t he standard.

The RECOMMENDED way to i ncrease cwnd during congestion avoidance is
to count the number of bytes that have been acknow edged by ACKs for
new data. (A drawback of this inplenentation is that it requires

mai nt ai ning an additional state variable.) Wen the nunber of bytes
acknow edged reaches cwnd, then cwnd can be increnmented by up to SMSS
bytes. Note that during congestion avoidance, cwnd MJST NOT be

Al man, et al. St andards Track [Page 6]

RFC 5681 TCP Congesti on Control Sept ember 2009

i ncreased by nore than SMSS bytes per RTT. This nethod both all ows
TCPs to increase cwnd by one segnent per RTIT in the face of del ayed
ACKs and provi des robustness agai nst ACK Divi si on attacks.

Anot her comon fornmula that a TCP MAY use to update cwnd during
congestion avoi dance is given in equation (3):

cwnd += SMBS* SMES/ cwnd (3)

Thi s adjustnent is executed on every incom ng ACK that acknow edges
new data. Equation (3) provides an acceptabl e approxi mation to the
underlying principle of increasing cwnd by 1 full-sized segnent per
RTT. (Note that for a connection in which the receiver is

acknow edgi ng every-other packet, (3) is |ess aggressive than all owed
-- roughly increasing cwnd every second RTT.)

I mpl ementation Note: Since integer arithmetic is usually used in TCP
i npl enentations, the formula given in equation (3) can fail to

i ncrease cwnd when the congestion window is |arger than SMSS* SMSS.

If the above fornmula yields 0, the result SHOULD be rounded up to 1
byt e.

I mpl ement ati on Note: O der inplenentations have an additiona
additive constant on the right-hand side of equation (3). This is
incorrect and can actually lead to dimnished perfornance [RFC2525].

| mpl ement ati on Note: Some inplenmentations nmaintain cwnd in units of
bytes, while others in units of full-sized segnents. The latter wll
find equation (3) difficult to use, and may prefer to use the
counting approach di scussed in the previous paragraph

When a TCP sender detects segnent |oss using the retransm ssion tiner
and the given segnent has not yet been resent by way of the

retransm ssion tiner, the value of ssthresh MJUST be set to no nore
than the value given in equation (4):

ssthresh = max (FlightSize / 2, 2*SMSS) (4)

where, as discussed above, FlightSize is the amunt of outstandi ng
data in the network.

On the other hand, when a TCP sender detects segnent |oss using the
retransm ssion timer and the given segnent has already been
retransmtted by way of the retransmission tinmer at |east once, the
val ue of ssthresh is held constant.

Al man, et al. St andards Track [Page 7]

RFC 5681 TCP Congesti on Control Sept ember 2009

| mpl enentati on Note: An easy mstake to nake is to sinply use cwnd
rather than FlightSize, which in sonme inplenmentations may
incidentally increase well beyond rwnd.

Furthernore, upon a timeout (as specified in [RFC2988]) cwnd MJST be
set to no nore than the | oss wi ndow, LW which equals 1 full-sized
segnent (regardl ess of the value of |W. Therefore, after
retransmtting the dropped segnent the TCP sender uses the slow start
algorithmto increase the window from1 full-sized segnent to the new
val ue of ssthresh, at which point congestion avoi dance again takes
over.

As shown in [FF96] and [RFC3782], slowstart-based | oss recovery
after a tinmeout can cause spurious retransmi ssions that trigger
dupli cate acknowl edgnents. The reaction to the arrival of these
duplicate ACKs in TCP inplenmentations varies widely. This docunent
does not specify how to treat such acknow edgnents, but does note
this as an area that nmay benefit fromadditional attention
experimentation and specification

3.2. Fast Retransmit/Fast Recovery

A TCP recei ver SHOULD send an i medi ate duplicate ACK when an out -

of -order segnent arrives. The purpose of this ACKis to informthe
sender that a segnent was received out-of-order and whi ch sequence
nunber is expected. Fromthe sender’s perspective, duplicate ACKs
can be caused by a nunmber of network problenms. First, they can be
caused by dropped segments. |In this case, all segments after the
dropped segnment will trigger duplicate ACKs until the loss is
repaired. Second, duplicate ACKs can be caused by the re-ordering of
data segnents by the network (not a rare event al ong sonme network
paths [Pax97]). Finally, duplicate ACKs can be caused by replication
of ACK or data segments by the network. 1In addition, a TCP receiver
SHOULD send an i medi ate ACK when the incoming segnment fills in al

or part of a gap in the sequence space. This will generate nore
timely information for a sender recovering froma |oss through a
retransm ssion timeout, a fast retransnmit, or an advanced | oss
recovery algorithm as outlined in section 4. 3.

The TCP sender SHOULD use the "fast retransmt" algorithmto detect
and repair |oss, based on incom ng duplicate ACKs. The fast
retransmt algorithmuses the arrival of 3 duplicate ACKs (as defined
in section 2, without any intervening ACKs whi ch nove SND. UNA) as an
i ndi cation that a segnent has been lost. After receiving 3 duplicate
ACKs, TCP perforns a retransm ssion of what appears to be the m ssing
segnment, without waiting for the retransm ssion tiner to expire.

Al man, et al. St andards Track [Page 8]

RFC 5681 TCP Congesti on Control Sept ember 2009

After the fast retransmt al gorithm sends what appears to be the

m ssing segnment, the "fast recovery" al gorithm governs the

transm ssion of new data until a non-duplicate ACK arrives. The
reason for not performng slow start is that the receipt of the
duplicate ACKs not only indicates that a segment has been | ost, but
al so that segnents are nost |likely |leaving the network (although a
nassi ve segnment duplication by the network can invalidate this
conclusion). In other words, since the receiver can only generate a
duplicate ACK when a segnment has arrived, that segment has left the
network and is in the receiver’s buffer, so we knowit is no |onger
consum ng network resources. Furthernore, since the ACK "cl ock”
[Jac88] is preserved, the TCP sender can continue to transmt new
segnents (al though transm ssion nust continue using a reduced cwnd,
since loss is an indication of congestion).

The fast retransmit and fast recovery algorithnms are inplenented
together as follows.

1. On the first and second duplicate ACKs received at a sender, a
TCP SHOULD send a segnment of previously unsent data per [RFC3042]
provi ded that the receiver’s advertised wi ndow allows, the tota
FlightSi ze would remain | ess than or equal to cwnd plus 2*SMSS,
and that new data is available for transm ssion. Further, the
TCP sender MUST NOT change cwnd to reflect these two segnents
[RFC3042]. Note that a sender using SACK [RFC2018] MJST NOT send
new data unl ess the incom ng duplicate acknow edgnent contains
new SACK i nformation.

2. Wen the third duplicate ACK is received, a TCP MJST set ssthresh
to no nore than the value given in equation (4). Wen [RFC3042]
is in use, additional data sent in limted transmt MJST NOT be
included in this cal culation

3. The lost segnment starting at SND. UNA MJUST be retransmtted and
cwnd set to ssthresh plus 3*SM5S. This artificially "inflates”
the congestion wi ndow by the nunber of segnents (three) that have
left the network and which the receiver has buffered.

4. For each additional duplicate ACK received (after the third),
cwnd MJST be incremented by SMSS. This artificially inflates the
congestion window in order to reflect the additional segnent that
has | eft the network.

Not e: [SCWA99] di scusses a receiver-based attack whereby many

bogus duplicate ACKs are sent to the data sender in order to
artificially inflate cwnd and cause a hi gher than appropriate

Al man, et al. St andards Track [Page 9]

RFC 5681 TCP Congesti on Control Sept ember 2009

sending rate to be used. A TCP MAY therefore Iimt the nunber of
times cwnd is artificially inflated during | oss recovery to the
nunber of outstanding segrments (or, an approximation thereof).

Not e: When an advanced | oss recovery mechani sm (such as outlined
in section 4.3) is not in use, this increase in FlightSize can
cause equation (4) to slightly inflate cwnd and ssthresh, as sone
of the segnents between SND. UNA and SND. NXT are assumed to have
left the network but are still reflected in FlightSize.

5. When previously unsent data is avail able and the new val ue of
cwnd and the receiver’s advertised wi ndow allow, a TCP SHOULD
send 1*SMSS byt es of previously unsent data.

6. Wen the next ACK arrives that acknow edges previously
unacknow edged data, a TCP MJST set cwnd to ssthresh (the val ue
set in step 2). This is termed "deflating" the w ndow.

This ACK should be the acknow edgnent elicited by the

retransm ssion fromstep 3, one RTT after the retransni ssion
(though it may arrive sooner in the presence of significant out-
of -order delivery of data segments at the receiver).
Additionally, this ACK should acknow edge all the internediate
segnents sent between the | ost segnment and the receipt of the
third duplicate ACK, if none of these were |ost.

Note: This algorithmis known to generally not recover efficiently
frommultiple losses in a single flight of packets [FF96]. Section
4.3 bel ow addresses such cases.

4. Additional Considerations
4.1. Restarting Idle Connections

A known problemw th the TCP congestion control algorithnms described
above is that they allow a potentially inappropriate burst of traffic
to be transnitted after TCP has been idle for a relatively |ong
period of time. After an idle period, TCP cannot use the ACK cl ock
to strobe new segments into the network, as all the ACKs have drained
fromthe network. Therefore, as specified above, TCP can potentially
send a cwnd-size line-rate burst into the network after an idle
period. In addition, changing network conditions may have rendered
TCP's notion of the avail able end-to-end network capacity between two
endpoints, as estimated by cwnd, inaccurate during the course of a
long idle period.

Al man, et al. St andards Track [Page 10]

RFC 5681 TCP Congesti on Control Sept ember 2009

[Jac88] recomends that a TCP use slow start to restart transni ssion
after a relatively long idle period. Slow start serves to restart
the ACK clock, just as it does at the beginning of a transfer. This
mechani sm has been w dely deployed in the foll owi ng nanner. Wen TCP
has not received a segnent for nore than one retransm ssion tineout,
cwnd is reduced to the value of the restart wi ndow (RW before
transm ssi on begins.

For the purposes of this standard, we define RW= mnin(lWcwnd).

Using the last time a segnment was received to determ ne whether or
not to decrease cwnd can fail to deflate cwnd in the comopn case of
persi stent HTTP connections [HTH98]. |In this case, a Wb server
receives a request before transnmitting data to the Wb client. The
recepti on of the request makes the test for an idle connection fail
and allows the TCP to begin transm ssion with a possibly

i nappropriately | arge cwnd

Therefore, a TCP SHOULD set cwnd to no nore than RW before begi nni ng
transm ssion if the TCP has not sent data in an interval exceeding
the retransmi ssion tineout.

4.2. Cenerating Acknow edgnents

The del ayed ACK al gorithm specified in [RFC1122] SHOULD be used by a
TCP receiver. Wen using del ayed ACKs, a TCP receiver MJST NOT
excessi vely del ay acknow edgnents. Specifically, an ACK SHOULD be
generated for at |east every second full-sized segment, and MJST be
generated within 500 nms of the arrival of the first unacknow edged
packet .

The requirenent that an ACK "SHOULD' be generated for at |east every
second full-sized segrment is listed in [RFC1122] in one place as a
SHOULD and anot her as a MJUST. Here we unanbi guously state it is a
SHOULD. We al so enphasize that this is a SHOULD, meaning that an

i npl enentor shoul d i ndeed only deviate fromthis requirenent after
careful consideration of the inplications. See the discussion of
"Stretch ACK violation" in [RFC2525] and the references therein for a
di scussi on of the possible perfornance problenms with generati ng ACKs
| ess frequently than every second full-sized segment.

In sone cases, the sender and receiver may not agree on what
constitutes a full-sized segnent. An inplenentation is deened to
conply with this requirenment if it sends at |east one acknow edgnent
every time it receives 2*RMSS bytes of new data fromthe sender
where RMSS is the Maxi mum Segnent Size specified by the receiver to
the sender (or the default value of 536 bytes, per [RFC1122], if the
recei ver does not specify an MSS option during connection

Al man, et al. St andards Track [Page 11]

RFC 5681 TCP Congesti on Control Sept ember 2009

establishnent). The sender nay be forced to use a segnent size |ess
than RVSS due to the nmaxi mumtransm ssion unit (MIU), the path MU
di scovery algorithmor other factors. For instance, consider the
case when the receiver announces an RMSS of X bytes but the sender
ends up using a segnment size of Y bytes (Y < X) due to path MIU

di scovery (or the sender’s MIU size). The receiver will generate
stretch ACKs if it waits for 2*X bytes to arrive before an ACK is
sent. Clearly this will take nore than 2 segnents of size Y bytes.
Therefore, while a specific algorithmis not defined, it is desirable
for receivers to attenpt to prevent this situation, for exanple, by
acknow edgi ng at | east every second segment, regardl ess of size.
Finally, we repeat that an ACK MUST NOT be del ayed for nore than 500
ns waiting on a second full-sized segnent to arrive

Qut - of -order data segments SHOULD be acknow edged i medi ately, in
order to accelerate | oss recovery. To trigger the fast retransmt
algorithm the receiver SHOULD send an i medi ate duplicate ACK when
it receives a data segnent above a gap in the sequence space. To
provi de feedback to senders recovering froml osses, the receiver
SHOULD send an i medi ate ACK when it receives a data segnent that
fills in all or part of a gap in the sequence space.

A TCP recei ver MIJST NOT generate nore than one ACK for every incom ng
segnent, other than to update the offered wi ndow as the receiving
application consunes new data (see [RFC813] and page 42 of [RFC793]).

4.3. Loss Recovery Mechani sns

A nunber of |oss recovery algorithns that augnment fast retransmt and
fast recovery have been suggested by TCP researchers and specified in
the RFC series. Wiile sone of these algorithns are based on the TCP
sel ective acknow edgnment (SACK) option [RFC2018], such as [FF96],

[MMB6a], [MW6b], and [RFC3517], others do not require SACKs, such as
[Hoe96], [FF96], and [RFC3782]. The non-SACK al gorithms use "partia
acknow edgnent s* (ACKs that cover previously unacknow edged data, but
not all the data outstanding when | oss was detected) to trigger
retransm ssions. Wile this docunent does not standardi ze any of the
specific algorithns that may i nprove fast retransnmit/fast recovery,
these enhanced algorithms are inplicitly allowed, as |ong as they
foll ow the general principles of the basic four algorithnms outlined
above.

That is, when the first loss in a wi ndow of data is detected,
ssthresh MJUST be set to no nore than the val ue given by equation (4).
Second, until all |ost segments in the wi ndow of data in question are
repai red, the number of segnments transmitted in each RTT MJUST be no
nore than half the nunber of outstandi ng segnents when the | oss was
detected. Finally, after all loss in the given wi ndow of segnents

Al man, et al. St andards Track [Page 12]

RFC 5681 TCP Congesti on Control Sept ember 2009

has been successfully retransmtted, cwnd MJST be set to no nore than
ssthresh and congesti on avoi dance MJST be used to further increase
cwnd. Loss in two successive windows of data, or the |loss of a
retransm ssi on, should be taken as two indications of congestion and,
therefore, cwnd (and ssthresh) MJST be |owered twice in this case.

We RECOMMVEND t hat TCP inpl enmentors enpl oy sone form of advanced | oss

recovery that can cope with nultiple | osses in a wi ndow of data. The
algorithms detailed in [RFC3782] and [RFC3517] conformto the genera

principles outlined above. W note that while these are not the only
two algorithms that conformto the above general principles these two
al gorithnms have been vetted by the comunity and are currently on the
St andards Track

5. Security Considerations

Thi s docunent requires a TCP to dimnish its sending rate in the
presence of retransm ssion tineouts and the arrival of duplicate
acknow edgnents. An attacker can therefore inmpair the performance of
a TCP connection by either causing data packets or their

acknow edgnents to be lost, or by forging excessive duplicate

acknow edgnent s.

In response to the ACK division attack outlined in [SCWA99], this
docunent RECOMMVENDS i ncreasi ng the congesti on wi ndow based on the
nunber of bytes newly acknow edged in each arriving ACK rather than
by a particular constant on each arriving ACK (as outlined in section
3.1).

The Internet, to a considerable degree, relies on the correct

i mpl enentation of these algorithns in order to preserve network
stability and avoid congestion collapse. An attacker could cause TCP
endpoints to respond nore aggressively in the face of congestion by
forgi ng excessive duplicate acknow edgnments or excessive

acknow edgnents for new data. Conceivably, such an attack could
drive a portion of the network into congestion collapse.

6. Changes between RFC 2001 and RFC 2581

[RFC2001] was extensively rewitten editorially and it is not
feasible to item ze the |ist of changes between [RFC2001] and

[RFC2581]. The intention of [RFC2581] was to not change any of the
recomendati ons given in [RFC2001], but to further clarify cases that
were not discussed in detail in [RFC2001]. Specifically, [RFC2581]
suggest ed what TCP connections should do after a relatively long idle
period, as well as specified and clarified some of the issues

Al man, et al. St andards Track [Page 13]

RFC 5681 TCP Congesti on Control Sept ember 2009

pertaining to TCP ACK generation. Finally, the allowabl e upper bound
for the initial congestion w ndow was raised fromone to two
segnent s.

7. Changes Relative to RFC 2581

A specific definition for "duplicate acknow edgnent” has been added,
based on the definition used by BSD TCP

The document now notes that what to do with duplicate ACKs after the
retransm ssion timer has fired is future work and explicitly
unspecified in this docunent.

The initial w ndow requirenments were changed to allow Larger Initia
W ndows as standardized in [RFC3390]. Additionally, the steps to
take when an initial windowis discovered to be too | arge due to Path
MIU Di scovery [RFC1191] are detail ed.

The recomended initial value for ssthresh has been changed to say
that it SHOULD be arbitrarily high, where it was previously NAY.
This is to provide additional guidance to inplenmentors on the matter.

During slow start, the usage of Appropriate Byte Counting [RFC3465]
with L=1*SMBSS is explicitly reconmended. The nethod of increasing

cwnd given in [RFC2581] is still explicitly allowed. Byte counting
during congestion avoi dance is al so recommended, while the nethod
from [RFC2581] and ot her safe methods are still all owed.

The treatnent of ssthresh on retransm ssion tinmeout was clarified.
In particular, ssthresh nust be set to half the FlightSize on the
first retransm ssion of a given segnent and then is held constant on
subsequent retransmi ssions of the same segnent.

The description of fast retransmt and fast recovery has been
clarified, and the use of Limted Transmt [RFC3042] is now
r econmended.

TCPs now MAY limt the number of duplicate ACKs that artificially
inflate cwnd during |l oss recovery to the nunber of segnents

out standing to avoid the duplicate ACK spoofing attack described in
[SCWA99] .

The restart w ndow has been changed to min(IWcwnd) fromIW This
behavi or was described as "experimental" in [RFC2581].

It is now recomrended that TCP inplenmentors inplement an advanced

| oss recovery algorithmconformng to the principles outlined in this
docunent .

Al man, et al. St andards Track [Page 14]

RFC 5681 TCP Congesti on Control Sept ember 2009

The security considerati ons have been updated to di scuss ACK divi sion
and recommend byte counting as a counter to this attack

8. Acknow edgnents

The core algorithns we descri be were devel oped by Van Jacobson
[Jac88, Jac90]. |In addition, Limted Transmt [RFC3042] was

devel oped in conjunction with Hari Bal akrishnan and Sally Floyd. The
initial congestion wi ndow size specified in this document is a result
of work with Sally Floyd and Craig Partridge [RFC2414, RFC3390].

W Richard ("Rich") Stevens wote the first version of this docunent
[RFC2001] and co-authored the second version [RFC2581]. This present
versi on much benefits fromhis clarity and thoughtful ness of
description, and we are grateful for Rich's contributions in

el uci dati ng TCP congestion control, as well as in nore broadly
hel pi ng us understand numerous issues relating to networking.

W& wi sh to enphasi ze that the shortconmi ngs and m stakes of this
docunent are solely the responsibility of the current authors.

Sone of the text fromthis docunent is taken from"TCP/IP
[Ilustrated, Volume 1: The Protocols" by W Richard Stevens

(Addi son-Wesl ey, 1994) and "TCP/IP Illustrated, Volunme 2: The

| mpl enentation” by Gary R Wight and W Richard Stevens (Addi son-
Wesl ey, 1995). This nmaterial is used with the perm ssion of

Addi son- sl ey.

Ani|l Agarwal, Steve Arden, Neal Cardwell, Noritoshi Dem zu, CGorry
Fairhurst, Kevin Fall, John Heffner, Alfred Hoenes, Sally Floyd,
Rei ner Ludwi g, Matt Mathis, Craig Partridge, and Joe Touch
contributed a number of hel pful suggestions.

9. References

9.1. Normative References

[RFC793] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[RFC1122] Braden, R, Ed., "Requirenents for Internet Hosts -
Conmuni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC1191] Mogul, J. and S. Deering, "Path MrU di scovery", RFC 1191
Novenber 1990.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Al man, et al. St andards Track [Page 15]

RFC 5681

TCP Congesti on Control Sept ember 2009

9.2. Informative References

[CI89]

[FF96]

[Hoe96]

[HTHO8]

[Jac88]

[Jac90]

[MVB6a]

[MVB6b]

[Pax97]

[RFC813]

[RFC2001]

[RFC2018]

Chiu, D. and R Jain, "Analysis of the Increase/Decrease
Al gorithns for Congestion Avoi dance in Computer Networks",
Journal of Computer Networks and | SDN Systens, vol. 17, no.
1, pp. 1-14, June 1989.

Fall, K. and S. Floyd, "Sinulation-based Conparisons of
Tahoe, Reno and SACK TCP", Conputer Communi cation Review,
July 1996, ftp://ftp.ee.|lDbl.gov/papers/sacks. ps. Z.

Hoe, J., "Inproving the Start-up Behavior of a Congestion
Control Schene for TCP", In ACM SI GCOMM August 1996.

Hughes, A., Touch, J., and J. Hei demann, "lssues in TCP
Slow Start Restart After Idle", Wrk in Progress, Mrch
1998.

Jacobson, V., "Congestion Avoi dance and Control", Computer
Comuni cation Review, vol. 18, no. 4, pp. 314-329, Aug.
1988. ftp://ftp.ee.lDbl.gov/papers/congavoid. ps. Z

Jacobson, V., "Modified TCP Congesti on Avoi dance
Al gorithni, end2end-interest nmailing list, April 30, 1990.
ftp://ftp.isi.edu/ end2end/ end2end-interest-1990. mail .

Mathis, M and J. Mahdavi, "Forward Acknow edgment:

Refi ni ng TCP Congestion Control", Proceedi ngs of

SI GCOWM 96, August, 1996, Stanford, CA. Available from
http: //ww. psc. edu/ net wor ki ng/ paper s/ papers. htm

Mathis, M and J. Mahdavi, "TCP Rate-Hal ving wi th Bounding
Par armet ers", Technical report. Available from
http: //ww. psc. edu/ net wor ki ng/ paper s/ FACKnot es/ current .

Paxson, V., "End-to-End Internet Packet Dynam cs",
Proceedi ngs of SIGCOW ' 97, Cannes, France, Sep. 1997.

Cark, D., "Wndow and Acknow edgenment Strategy in TCP",
RFC 813, July 1982.

Stevens, W, "TCP Slow Start, Congestion Avoi dance, Fast
Retransmt, and Fast Recovery Al gorithns", RFC 2001,
January 1997.

Mathis, M, Mhdavi, J., Floyd, S., and A. Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, COctober 1996.

Al man, et al. St andards Track [Page 16]

RFC 5681

[RFC2414]

[RFC2525]

[RFC2581]

[RFC2883]

[RFC2988]

[RFC3042]

[RFC3168]

[RFC3390]

[RFC3465]

[RFC3517]

[RFC3782]

[RFC4821]

[SCWAQ9]

[St e94]

TCP Congesti on Control Sept ember 2009

Allman, M, Floyd, S., and C. Partridge, "Increasing TCP s
Initial Wndow', RFC 2414, Septenber 1998.

Paxson, V., Allman, M, Dawson, S., Fenner, W, Giner, J.,
Heavens, 1., Lahey, K., Senke, J., and B. Vol z, "Known TCP
| mpl enment ati on Probl ens", RFC 2525, March 1999.

Al man, M, Paxson, V., and W Stevens, "TCP Congestion
Control", RFC 2581, April 1999.

Fl oyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenment (SACK) Option
for TCP', RFC 2883, July 2000.

Paxson, V. and M Al lman, "Computing TCP's Retransmni ssion
Timer", RFC 2988, Novenber 2000.

Al man, M, Bal akrishnan, H, and S. Fl oyd, "Enhancing
TCP's Loss Recovery Using Limted Transnmit", RFC 3042,
January 2001.

Ramakri shnan, K., Floyd, S., and D. Bl ack, "The Addition of
Explicit Congestion Notification (ECN) to IP', RFC 3168,
Sept enber 2001.

Allman, M, Floyd, S., and C. Partridge, "Increasing TCP s
Initial Wndow', RFC 3390, COctober 2002.

Al man, M, "TCP Congestion Control with Appropriate Byte
Counting (ABC)", RFC 3465, February 2003.

Blanton, E., Allman, M, Fall, K, and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Al gorithmfor TCP', RFC 3517, April 2003.

Floyd, S., Henderson, T., and A. Qurtov, "The NewReno
Modi fication to TCP's Fast Recovery Al gorithni, RFC 3782,
April 2004.

Mathis, M and J. Heffner, "Packetization Layer Path MIU
Di scovery", RFC 4821, March 2007.

Savage, S., Cardwell, N, Wetherall, D., and T. Anderson,
"TCP Congestion Control Wth a M sbehaving Receiver", ACM
Conput er Comuni cation Review, 29(5), October 1999.

Stevens, W, "TCP/IP Illustrated, Volune 1: The Protocol s",
Addi son- Wesl ey, 1994.

Al man, et al. St andards Track [Page 17]

RFC 5681 TCP Congesti on Control Sept ember 2009

[W595] Wight, G and W Stevens, "TCP/IP Il lustrated, Volune 2:
The | npl ementati on", Addi son-Wsley, 1995.

Aut hors’ Addr esses

Mark All man

I nternational Conputer Science Institute (ICSl)
1947 Center Street

Suite 600

Ber kel ey, CA 94704-1198

Phone: +1 440 235 1792

EMai | : mall man@cir.org

http://ww.icir.org/ mll man/

Vern Paxson

I nternati onal Conputer Science Institute (ICSl)
1947 Center Street

Suite 600

Ber kel ey, CA 94704-1198

Phone: +1 510/ 642-4274 x302

EMai |l : vern@cir.org

http://wwv.icir.org/vern/

Et han Bl ant on

Purdue University Computer Sciences

305 North University Street

West Lafayette, IN 47907

EMai | : ebl anton@s. purdue. edu
http://ww. cs. purdue. edu/ hones/ ebl ant on/

Al man, et al. St andards Track [Page 18]

