I nt ernet Engi neering Task Force (1 ETF) M Thomnson
Request for Comments: 8291 Mozill a
Cat egory: Standards Track Noverber 2017
| SSN: 2070-1721

Message Encryption for Wb Push
Abst r act

Thi s docunent describes a nmessage encryption schene for the Wb Push
protocol. This schene provides confidentiality and integrity for
nmessages sent froman application server to a user agent.

Status of This Meno
This is an Internet Standards Track docunent.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Further infornmation on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://ww. rfc-editor.org/info/rfc8291

Copyri ght Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thonson St andards Track [Page 1]

RFC 8291 Web Push Encryption November 2017

Tabl e of Contents

1. IntroduCti On ... e 2
1.1. Notational Conventions, 3
2. Push Message Encryption OVerviewiiiinnannen... 3
2.1. Key and Secret Distribution 4
3. Push Message ENCrypti On e 4
3.1. Diffie-Hellman Key Agreement, 5
3.2. Push Message Authentication 5
3.3. Conbining Shared and Authentication Secrets 5
3.4, EnCryption SUMTAIY e e e e e e e 6
4. Restrictions on Use of "aesl1l28gcni Content Coding 7
5. Push Message Encryption Exanple 8
6. TANA Considerati ONS i e e 8
7. Security Considerati ONS 8
8. References 10
8.1. Normative References 10
8.2. Informative References i, 11
Appendi x A, Internediate Values for Encryption 12
AUt hor’ s AdAr €SS . ..ot 13
1. Introduction

The Web Push protocol [RFC8030] is an internedi ated protocol by
necessity. Messages from an application server are delivered to a
user agent (UA) via a push service, as shown in Figure 1

|
Fomem o + oo + o +

Figure 1
Thi s docunent describes how nmessages sent using this protocol can be

secured agai nst inspection, nodification, and forgery by a push
servi ce.

Thonson St andards Track [Page 2]

RFC 8291 Web Push Encryption November 2017

Web Push nessages are the payl oad of an HITP nessage [RFC7230].
These nessages are encrypted using an encrypted content encoding
[RFC8188]. This document describes how this content encoding is
appl i ed and descri bes a reconmended key managenent schene.

Mul tiple users of Wb Push at the sane user agent often share a
central agent that aggregates push functionality. This agent can
enforce the use of this encryption schenme by applications that use
push nessagi ng. An agent that only delivers nmessages that are
properly encrypted strongly encourages the end-to-end protection of
nmessages.

A web browser that inplenents the Push API [API] can enforce the use
of encryption by forwarding only those nessages that were properly
encrypt ed.

1.1. Notational Conventions

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in al
capitals, as shown here.

Thi s docunent uses the term nology from[RFC8030], primarily "user
agent", "push service", and "application server".

2. Push Message Encryption Overview

Encrypting a push nessage uses Elliptic Curve Diffie-Hellnman (ECDH)
[ECDH] on the P-256 curve [FIPS186] to establish a shared secret (see
Section 3.1) and a symmetric secret for authentication (see

Section 3.2).

A user agent generates an ECDH key pair and authentication secret
that it associates with each subscription it creates. The ECDH
public key and the authentication secret are sent to the application
server with other details of the push subscription

When sendi ng a message, an application server generates an ECDH key
pair and a randomsalt. The ECDH public key is encoded into the
"keyi d" paraneter of the encrypted content coding header, and the
salt is encoded into the "salt" paraneter of that sanme header (see
Section 2.1 of [RFC8188]). The ECDH key pair can be discarded after
encrypting the nessage.

Thonson St andards Track [Page 3]

RFC 8291 Web Push Encryption November 2017

The content of the push nessage is encrypted or decrypted using a
content encryption key and nonce. These values are derived by taking
the "keyid" and "salt" as input to the process described in

Section 3.

2.1. Key and Secret Distribution

The application using the subscription distributes the subscription
public key and authentication secret to an authorized application
server. This could be sent along with other subscription informtion
that is provided by the user agent, such as the push subscription
URI .

An application MJST use an authenticated, confidentiality-protected
conmuni cati ons nedium for this purpose. In addition to the reasons
described in [RFC8030], this use ensures that the authentication
secret is not reveal ed to unauthorized entities, which would all ow
those entities to generate push nessages that will be accepted by the
user agent.

Most applications that use push nmessagi ng have a preexisting

rel ati onship with an application server that can be used for

di stribution of subscription data. An authenticated comunication
nmechani smthat provi des adequate confidentiality and integrity
protection, such as HTTPS [RFC2818], is sufficient.

3. Push Message Encryption
Push nessage encryption happens in four phases:

0 A shared secret is derived using ECDH [ECDH] (see Section 3.1 of
thi s docunent).

o0 The shared secret is then conbined with the authentication secret
to produce the input keying material (IKM used in [RFC8188] (see
Section 3.3 of this docunent).

o A content encryption key and nonce are derived using the process
in [RFC8188] .

o Encryption or decryption follows according to [RFC8188].
The key derivation process is summarized in Section 3.4.

Restrictions on the use of the encrypted content coding are described
in Section 4.

Thonson St andards Track [Page 4]

RFC 8291 Web Push Encryption November 2017

3.1. Diffie-Hellnman Key Agreenent

For each new subscription that the user agent generates for an
application, it also generates a P-256 [FIPS186] key pair for use in
ECDH [ECDH] .

When sendi ng a push nessage, the application server also generates a
new ECDH key pair on the sane P-256 curve

The ECDH public key for the application server is included as the
"keyi d" paraneter in the encrypted content coding header (see
Section 2.1 of [RFC8188]).

An application server conbines its ECDH private key with the public
key provided by the user agent using the process described in [ECDH;
on recei pt of the push nessage, a user agent combines its private key
with the public key provided by the application server in the "keyid"
paranmeter in the sane way. These operations produce the sane val ue
for the ECDH shared secret.

3.2. Push Message Authentication

To ensure that push messages are correctly authenticated, a symetric
aut hentication secret is added to the information generated by a user
agent. The authentication secret is mxed into the key derivation
process described in Section 3.3.

A user agent MUST generate and provide a hard-to-guess sequence of 16
octets that is used for authentication of push messages. This SHOULD
be generated by a cryptographically strong random nunber generator
[RFC4086] .

3.3. Combi ni ng Shared and Aut hentication Secrets
The shared secret produced by ECDH is conbined with the
aut hentication secret using the HVAC based key derivation function
(HKDF) [RRFC5869]. This produces the input keying material used by
[RFC8188] .

The HKDF function uses the SHA-256 hash al gorithm [FI PS180-4] with
the follow ng inputs:

salt: the authentication secret

KM the shared secret derived using ECDH

Thonson St andards Track [Page 5]

RFC 8291 Web Push Encryption November 2017

i nfo: the concatenation of the ASCI|-encoded string "WbPush: info"
(this string is not NUL-term nated), a zero octet, the user
agent ECDH public key, and the application server ECDH public
key, (both ECDH public keys are in the unconpressed point form
defined in [X9.62]. That is:

key info = "WebPush: info" || O0x00 || ua_public || as_public

L: 32 octets (i.e., the output is the length of the underlying
SHA- 256 HVAC functi on out put)

3.4. Encryption Summary

This results in a final content encryption key and nonce generation
using the foll owi ng sequence, which is shown here in pseudocode with
HKDF expanded into separate discrete steps using HVAC wi th SHA- 256:

-- For a user agent:

ecdh_secret = ECDH(ua_private, as_public)
aut h_secret = randon(16)

salt = <from content codi ng header >

-- For an application server:

ecdh_secret = ECDH(as_private, ua_public)
aut h_secret = <from user agent>

salt = randon(16)

-- For both:

Use HKDF to conbine the ECDH and aut hentication secrets
HKDF- Extract (sal t=auth_secret, | KM=ecdh_secret)

PRK key = HMAC- SHA- 256(aut h_secret, ecdh_secret)

HKDF- Expand(PRK_key, key_info, L_key=32)

key info = "WebPush: info" || O0x00 || ua_public || as_public
| KM = HVAC- SHA- 256(PRK_key, key_info || 0x01)

HKDF cal cul ations from RFC 8188

HKDF- Extract(salt, | KM

PRK = HVAC- SHA- 256(salt, |1KM

HKDF- Expand(PRK, cek_info, L_cek=16)

cek_info = "Content-Encodi ng: aes128gcni || 0x00
CEK = HWVAC SHA- 256(PRK, cek_info || 0x01)[O0..15]

HKDF- Expand(PRK, nonce_info, L_nonce=12)

nonce_i nfo = "Content-Encodi ng: nonce" || 0x00
NONCE = HMAC- SHA- 256(PRK, nonce_info || 0x01)[O0..11]

Thonson St andards Track [Page 6]

RFC 8291 Web Push Encryption November 2017

Note that this omits the exclusive-OR of the final nonce with the
record sequence nunber, since push nessages contain only a single
record (see Section 4) and the sequence nunber of the first record is
zero.

4. Restrictions on Use of "aesl128gcnt Content Codi ng

An application server MJST encrypt a push nessage with a single
record. This allows for a mininal receiver inplenmentation that
handl es a single record. An application server MJST set the "rs"
paranmeter in the "aesl128gcni content codi ng header to a size that is
greater than the sumof the | engths of the plaintext, the padding
delimter (1 octet), any padding, and the authentication tag (16
octets).

A push message MJST include the application server ECDH public key in
the "keyi d" paraneter of the encrypted content coding header. The
unconpressed point formdefined in [X9.62] (that is, a 65-octet
sequence that starts with a 0x04 octet) forns the entirety of the
"keyid". Note that this neans that the "keyid" paranmeter will not be
valid UTF-8 as reconmended in [RFC8188].

A push service is not required to support nore than 4096 octets of
payl oad body (see Section 7.2 of [RFC38030]). Absent header (86
octets), padding (mnimm1l octet), and expansion for

AEAD AES 128 GCM (16 octets), this equates to, at nobst, 3993 octets
of plai ntext.

An application server MJST NOT use ot her content encodi ngs for push
nmessages. |In particular, content encodings that conpress could
result in | eaking of push nessage contents. The Content-Encoding
header field therefore has exactly one value, which is "aes128gcni.
Mul tiple "aesl28gcni val ues are not pernitted.

A user agent is not required to support multiple records. A user
agent MAY ignore the "rs" paraneter. |If a record size is unchecked,
decryption will fail with high probability for all valid cases. The
paddi ng delimter octet MJST be checked; val ues other than 0x02 MJST
cause the nmessage to be discarded.

Thonson St andards Track [Page 7]

RFC 8291 Web Push Encryption November 2017

5.

Push Message Encryption Exanpl e

The foll owi ng exanpl e shows a push nessage being sent to a push
servi ce.

POST / push/ JzLQBr azJf FBROagvOVsLrt 54wdr JUsV HTTP/ 1.1
Host: push. exanpl e. net

TTL: 10

Cont ent - Lengt h: 145

Cont ent - Encodi ng: aes128gcm

DGv6r alnl YgDCS1FRnbzl wAAEABBBP4z 9KsN6nGRTbVYI _c7VJISPQIBt kgcy27m
m MoZl | gDl | 6e3vCYLocl nmyYWANS6TI zACBWEQKKGEPBr u3j | 7A yl 95bQou6cVPT
pKAMygkf 1CXzt LVBSt 2Ks 30ZwbhuwXPXLW ouBW. VWEGNWex SgSxsj _Qul cyda-f N

Thi s exanpl e shows the ASCII-encoded string, "Wen | grow up, | want
to be a waternelon”". The content body is shown here with |ine

wr appi ng and URL-safe base64ur|l [RFC4648] encoding to neet
presentation constraints.

The keys used are shown bel ow using the unconpressed form [X9. 62]
encoded usi ng base64url .

Aut hentication Secret: BTBZMgHH6r 4Tt s7J_aSl gg
Recei ver:
private key: ql1dXpw3UpT5VOnu_cf v6i h07Aens3nj x| - IWjLcMR4
public key: BCVxsr7N_eNgVRgvHt DOzTZsEc6- W- JvLexhqUzORcx
aCzi 6- AYWKvTBHMbj yPj s7Vd8pZGHESRpkNt ol Ai w4
Sender:
private key: yfWi YE- n4d6HLNHOKqZOF1f JJU3Myr ct 3AELt AQ oRw
public key: BP4z9KsN6nGRTbVYI c¢7VISPQTBt kgcy27m ml MoZl | g
Dl | 6e3vCYLocl nmyYWAnS6TI z ACBWEQKK6PBr u3j | 7A8

Internmedi ate values for this exanple are included in Appendi x A
| ANA Consi derati ons

Thi s docunent does not require any | ANA acti ons.

Security Consi derations

The privacy and security considerations of [RFC8030] all apply to the
use of this nechani sm

The Security Considerations section of [RFC8188] describes the
[imtations of the content encoding. |In particular, no HTTP header
fields are protected by the content encodi ng scheme. A user agent
MUST consi der HTTP header fields to have come fromthe push service.

Thonson St andards Track [Page 8]

RFC 8291 Web Push Encryption November 2017

Though header fields m ght be necessary for processing an HITP
response correctly, they are not needed for correct operation of the
protocol. An application on the user agent that uses information
fromheader fields to alter their processing of a push nessage is
exposed to a risk of attack by the push service.

The tim ng and | ength of conmunication cannot be hidden fromthe push
service. Wiile an outside observer mght see individual nessages
interm xed with each other, the push service will see which
application server is talking to which user agent and the
subscription that is used. Additionally, the I ength of nessages
coul d be reveal ed unl ess the paddi ng provided by the content encodi ng
schene is used to obscure |ength.

The user agent and application MJST verify that the public key they
receive is on the P-256 curve. Failure to validate a public key can
allow an attacker to extract a private key. The appropriate

val i dation procedures are defined in Section 4.3.7 of [X9.62] and,
alternatively, in Section 5.6.2.3 of [KEYAGREEMENT]. This process
consi sts of three steps:

1. Verify that Y is not the point at infinity (O,

2. Verify that for Y = (x, y), both integers are in the correct
interval,

3. Ensure that (x, y) is a correct solution to the elliptic curve
equat i on.

For these curves, inplenenters do not need to verify nmenbership in
the correct subgroup.

In the event that this encryption scheme woul d need to be replaced, a
new content codi ng schene could be defined. |In order to nanage
progressive depl oynent of the new schene, the user agent can expose

i nformati on on the content coding schemes that it supports. The
"support edCont ent Encodi ngs" paraneter of the Push APl [API] is an
exanpl e of how this night be done.

Thonson St andards Track [Page 9]

RFC 8291

8. References

Web Push Encryption November 2017

8.1. Nornmtive References

[ECDH]

[FI PS180- 4]

[FI PS186]

[RFC2119]

[RFC4086]

[RFC58609]

[RFC8030]

[RFC8174]

[RFC3188]

[X9. 62]

Thonson

SECG "SEC 1: Elliptic Curve Cryptography", Version 2.0,
May 2009, <http://ww. secg. org/>.

National Institute of Standards and Technol ogy (N ST),
"Secure Hash Standard (SHS)", FIPS PUB 180-4,
DO 10. 6028/ NI ST. FI PS. 180-4, August 2015.

National Institute of Standards and Technol ogy (NI ST),
"Digital Signhature Standard (DSS)", FIPS PUB 186-4,
DA 10. 6028/ NI ST. FI PS. 186-4, July 2013.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,

<https://ww. rfc-editor.org/info/rfc2119>.

East| ake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenments for Security", BCP 106, RFC 4086,
DA 10.17487/ RFC4086, June 2005,
<https://ww.rfc-editor.org/info/rfc4086>.

Krawczyk, H. and P. Eronen, "HVAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,

DO 10. 17487/ RFC5869, May 2010,
<https://ww.rfc-editor.org/info/rfc5869>.

Thonmson, M, Dammggio, E., and B. Raynor, Ed., "Generic
Event Delivery Using HTTP Push", RFC 8030,

DO 10.17487/ RFC8030, Decenber 2016,
<https://wwv.rfc-editor.org/info/rfc8030>.

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Wirds", BCP 14, RFC 8174, DA 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

Thonmson, M, "Encrypted Content-Encoding for HITP",
RFC 8188, DO 10.17487/ RFC8188, June 2017,
<https://ww.rfc-editor.org/info/rfc8188>.

ANSI, "Public Key Cryptography for the Financial Services

Industry: the Elliptic Curve Digital Signature Al gorithm
(ECDSA) ", ANSI X9.62, 2005.

St andards Track [Page 10]

RFC 8291 Web Push Encryption November 2017

8.2. Informative References

[API'] Beverl oo, P., Thomson, M, van Quwerkerk, M, Sullivan,
B., and E. Fullea, "Push API", Cctober 2017,
<https://ww. w3. or g/ TR/ push-api/ >.

[KEYAGREEMENT]
Barker, E., Chen, L., Roginsky, A, and M Sm d,
"Recomrendation for Pair-Wse Key Establishnment Schenes
Using Di screte Logarithm Cryptography", N ST Speci al
Publ i cati on 800-56A, Revision 2,
DO 10. 6028/ NI ST. SP. 800- 56Ar 2, May 2013.

[RFC2818] Rescorla, E., "HITP Over TLS', RFC 2818,
DO 10.17487/ RFC2818, May 2000,
<https://ww.rfc-editor.org/info/rfc2818>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://ww.rfc-editor.org/info/rfc4648>.

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DO 10.17487/ RFC7230, June 2014,
<https://ww. rfc-editor.org/info/rfc7230>.

Thonson St andards Track [Page 11]

RFC 8291 Web Push Encryption November 2017

Appendi x A. Internediate Values for Encryption
The internediate values calculated for the exanple in Section 5 are
shown here. The base64url values in these exanples include
whi t espace that can be renoved.
The following are inputs to the cal cul ation:
Pl ai ntext: V2hl bi BJI Gdyb3cgdXAs| Ekgd2FudCBObyBi ZSBhl HdhdGvybW/sb24
Application server public key (as_public):
BP4z9KsN6NnGRTbVYI _c7VISPQTBt kgcy27m ml MoZl | g
D | 6e3vCYLocl nmyWANS6TI z ACBWEqQKKGPBr u3j | 7A8

Application server private key (as_private):
yf WPi YE- n46HLNHOKqZOF1f JJU3MYr ct 3AELt AQ oRw

User agent public key (ua _public): BCvxsr7N _eNgVRqvHt D0zTZsEc6- V-
JvLexhqUzORcx aQzi 6- AYWKvTBHMbj yPj s7Vd8pZGHESRpk Nt ol Ai w4

User agent private key (ua_private):
g1dXpw3UpT5VOmu_cf _v6i h07Aens3nj xI - IWjLcMB4

Salt: DGv6ralnl YgDCS1FRnbzl w

Aut hentication secret (auth_secret): BTBZMyHH6r4Tts7J_aSl gg

Note that know edge of just one of the private keys is necessary.
The application server randomy generates the salt val ue, whereas
salt is input to the receiver.

This produces the follow ng internedi ate val ues:

Shared ECDH secret (ecdh_secret):
kyr L1j | | OHEzg3s M2ZVWRHDRB62YACZhhSI knJ672kSs

Pseudor andom key (PRK) for key combining (PRK key):
Snr 3JMkaHVDXHW n5wd C52W pCt d2EI EGBy k Dc ZWB2k

Info for key conbining (key_info): V2Vi UHVzaDogaWbnmbwAEJXGyvs3942BVG
g8eO0PTNNMMR zr 5VX4nBt 7G5 TMbFzFo70Lr 4BhZe9MEebhuPI - Ozt V3
yl kYf pdGmR29ggCLDgT- M_Sr Depxk U21WCP30LSUj OEw
bZl HM u5pZpTKGSCl A5Zent 7wrC6HCI5nFgJkuk5cwAv MBKi i uj wa7t 45ewP

I nput keying material for content encryption key derivation (IKM:
S4l1 YMb_LOFXxCeqOWhDx813KgSYqU26k Oy z\WUds XYyr g

Thonson St andards Track [Page 12]

RFC 8291 Web Push Encryption November 2017
PRK for content encryption (PRK):
09 eUZG svxChDCGRCdkLi DXr ReGOEVe SCdCcPBSJ Sc

Info for content encryption key derivation (cek_info):
Q@9udGVudClFbm\vZA uZzogYWWzMT1 422Nt AA

Content encryption key (CEK): ol hVWD4MRdy2XNICi KLxTg

Info for content encryption nonce derivation (nonce_info):
Q@9udGVvudClFbm\vZd uZzogbnBuY2UA

Nonce (NONCE): 4h_95kl XJ5E gnoN

The salt, record size of 4096, and application server public key
produce an 86-octet header of:

DGv6r alnl YgDCS1FRnbzl wAAEABBBP4z 9KsN6nCRTbVYI _c7VISPQIBt kgcy27mi
m Mozl | gDI | 6e3vCYLocl nmyYWANS6Tl z ACBWEQKK6PBr u3j | 7A8

The push nessage plaintext has the padding delimter octet (0x02)
appended to produce:

V2h! bi BJI Gdyb3cgdXAs| Ekgd2FudCBO byBi ZSBhl HihdGVybWsb24C

The plaintext is then encrypted with AES-GCM which emts ciphertext
of :

8pf eWDKbunFTO6SuDKoJHIQ 87S1QUrd i rN6CGcGr/sFz1lylsqlgVi 1Vhj VKHsUoEs
bl _OLpXMuG/nzQ

The header and ci phertext are concatenated and produce the result
shown in Section 5.

Aut hor’ s Addr ess

Martin Thonson
Mozilla

Email: martin.thomson@nuail.com

Thonson St andards Track [Page 13]

