I nt ernet Engi neering Task Force (1 ETF) Y. Coll et

Request for Comments: 8478 M Kucherawy, Ed
Cat egory: I nfornmational Facebook
| SSN: 2070-1721 Cct ober 2018

Zstandard Conpression and the application/zstd Media Type
Abst r act

Zstandard, or "zstd" (pronounced "zee standard"), is a data
conpressi on nechanism This docunent describes the nechani sm and
regi sters a nedia type and content encoding to be used when
transporting zstd-conpressed content via Miltipurpose Internet Mai
Ext ensi ons (M ME).

Despite use of the word "standard" as part of its nane, readers are
advi sed that this docunent is not an Internet Standards Track
specification; it is being published for informational purposes only.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for infornmational purposes.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the | ESG are candi dates for any |evel of I|nternet

St andard; see Section 2 of RFC 7841.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it nmay be obtained at
https://ww.rfc-editor.org/info/rfc8478.

Col l et & Kucherawy | nf or mati onal [Page 1]

RFC 8478 application/zstd Cct ober 2018

Copyri ght Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Col l et & Kucherawy I nf or mati onal [Page 2]

RFC 8478 application/zstd Cct ober

Tabl e of Contents

1.
2.
3

©oN

| ntroducti on
Definitions .
Conpr essi on Al gor| t hm

1. Frames

3.1.1. Zst andérd Fr ames.

3.1.1.1. Frane Header
3.1.1.2. Blocks . . .
3.1.1.3. Conpressed BI ocks .
3.1.1.4. Sequence Execution
3.1.1.5. Repeat Ofsets
3.1.2. Skippable Franes
Ent ropy Encodi ng
.1. FSE. .
4.1. 1. FSE Tabl e Descr| pt| on .
.2. Huffman Coding . .
4.2.1. Huffman Tree Descr|pt|on
4.2.1.1. Huffnman Tree Header . . .
4.2.1.2 FSE Conpr essi on of Huffman We| ghts . .
4.2.1.3. Conver5|onfromV\é|ghtsto Huf f man Preflx Codes .
4.2.2. Huffman- Coded Streans . .
Di ctionary Format

ANA Consi der at i oné . .
The 'application/zst d Med| a Type .

I

.1

.2. Content Encoding
3

Di ctionaries .
Security Considerations .
| mpl erent ation Status .
Ref er ences

9 1. Nor mati ve Ref erences
9.2. Informative References

Appendi x A. Decodi ng Tabl es for. P.re.defi hed Codes

A 1. Literal Length Code Table .
A. 2. Match Length Code Tabl e .
A.3. Ofset Code Table .

Acknowl edgnents .
Aut hors’ Addr esses

2018

Col l et & Kucherawy I nf or mati onal [Page 3]

RFC 8478 application/zstd Cct ober 2018

1. Introduction

Zstandard, or "zstd" (pronounced "zee standard"), is a data
conpressi on nechani sm akin to gzip [RFC1952].

Despite use of the word "standard" as part of its nane, readers are
advi sed that this docunent is not an Internet Standards Track
specification; it is being published for informational purposes only.

Thi s docunent describes the Zstandard format. Also, to enable the
transport of a data object conpressed with Zstandard, this docunent
registers a nmedia type that can be used to identify such content when
it is used in a payl oad encoded using Miltipurpose |Internet Mai

Ext ensi ons (M ME).

2. Definitions

Sonme terns used el sewhere in this docunent are defined here for
clarity.

unconpressed: Describes an arbitrary set of bytes in their origina
form prior to being subjected to conpression.

conpress, conpression: The act of processing a set of bytes via the
conpressi on nechani sm descri bed here.

conpressed: Describes the result of passing a set of bytes through
this mechanism The original input has thus been conpressed.

deconpress, deconpression: The act of processing a set of bytes
through the inverse of the conpressi on nechani sm descri bed here,
in an attenpt to recover the original set of bytes prior to
conpr essi on.

deconpressed: Describes the result of passing a set of bytes through
the reverse of this mechanism Wen this is successful, the
deconpressed payl oad and the unconpressed payl oad are
i ndi sti ngui shabl e.

encode: The process of translating data fromone formto anot her
this may include conpression or it may refer to other translations
done as part of this specification

decode: The reverse of "encode"; describes a process of reversing a
prior encoding to recover the original content.

Col l et & Kucherawy I nf or mati onal [Page 4]

RFC 8478 application/zstd Cct ober 2018

frane: Content conpressed by Zstandard is transforned into a
Zstandard franme. Miltiple franes can be appended into a single
file or stream A frame is conpletely independent, has a defined
begi nni ng and end, and has a set of paranmeters that tells the
decoder how to deconpress it.

bl ock: A frane encapsul ates one or nultiple blocks. Each bl ock
contains arbitrary content, which is described by its header, and
has a guaranteed maxi num content size that depends upon frane
paranmeters. Unlike franes, each bl ock depends on previous bl ocks
for proper decoding. However, each block can be deconpressed
wi thout waiting for its successor, allow ng stream ng operations.

natural order: A sequence or ordering of objects or values that is
typical of that type of object or value. A set of unique
integers, for exanple, is in "natural order"” if when progressing
fromone element in the set or sequence to the next, there is
never a decrease in val ue.

The nam ng convention for identifiers within the specification is
M xed_Case_Wth_Underscores. ldentifiers inside square brackets
indicate that the identifier is optional in the presented context.

3. Compression Al gorithm
This section describes the Zstandard al gorithm

The purpose of this docunent is to define a |ossless conpressed data
format that is a) independent of the CPU type, operating system file
system and character set and b) is suitable for file conpressi on and
pi pe and streami ng conpression, using the Zstandard algorithm The
text of the specification assumes a basic background in programm ng
at the level of bits and other primitive data representations.

The data can be produced or consuned, even for an arbitrarily | ong
sequentially presented input data stream using only an a prior
bounded anmount of internediate storage, and hence can be used in data
conmuni cations. The format uses the Zstandard conpressi on nethod,
and an optional xxHash-64 checksum nethod [XXHASH], for detection of
data corruption.

The data format defined by this specification does not attenpt to
al | ow random access to conpressed data.

Unl ess ot herwi se indicated bel ow, a conpliant conpressor nust produce

data sets that conformto the specifications presented here.
However, it does not need to support all options.

Col l et & Kucherawy I nf or mati onal [Page 5]

RFC 8478 application/zstd Cct ober 2018

3.

3.

1

1

A conpliant deconpressor nust be able to deconpress at |east one
wor ki ng set of paraneters that conforns to the specifications
presented here. It may also ignore informative fields, such as the
checksum \Whenever it does not support a paraneter defined in the
conpressed stream it nmust produce a non-ambi guous error code and
associ ated error nessage expl ai ni ng which paraneter i s unsupported.

This specification is intended for use by inplenenters of software to
conpress data into Zstandard format and/or deconpress data from
Zstandard format. The Zstandard format is supported by an open
source reference inplenentation, witten in portable C, and avail abl e
at [ZSTD .

Franes

Zstandard conpressed data is made up of one or nore frames. Each
frame is independent and can be deconpressed i ndependently of other
franes. The deconpressed content of nultiple concatenated franmes is
the concatenation of each frane's deconpressed content.

There are two frame formats defined for Zstandard: Zstandard franes
and skippable franes. Zstandard franes contain conpressed data,
whi | e ski ppabl e franes contain custom user mnetadata

1. Zstandard Franes

The structure of a single Zstandard frame is as foll ows:

o e e e oo S +
| Magi c_Nunber | 4 bytes |
Fom e e e e e oo Fom ek +
| Frame_Header | 2-14 bytes

o e e e e e ok T +
| Dat a_Bl ock | n bytes |
o e e e oo S +
| [More Data_Bl ocks] |

Fom e e e e e oo Fom ek +
| [Content Checksum | 0-4 bytes

o e e e e e ok T +

Magi c_Nunber: 4 bytes, little-endian format. Value: OxFD2FB528.
Frame_Header: 2 to 14 bytes, detailed in Section 3.1.1.1.

Data Bl ock: Detailed in Section 3.1.1.2. This is where data
appears.

Col l et & Kucherawy I nf or mati onal [Page 6]

RFC 8478 application/zstd Cct ober 2018

Content _Checksum An optional 32-bit checksum only present if
Cont ent _Checksum Flag is set. The content checksumis the result
of the XXH64() hash function [XXHASH] digesting the origina
(decoded) data as input, and a seed of zero. The |low 4 bytes of
the checksum are stored in little-endian format.

The magi ¢ nunber was selected to be | ess probable to find at the
begi nning of an arbitrary file. It avoids trivial patterns (0xO00,
OxFF, repeated bytes, increasing bytes, etc.), contains byte val ues
out side of ASCI| range, and doesn’'t map into UTF-8 space, all of

whi ch reduce the likelihood of its appearance at the top of a text
file.

3.1.1.1. Frane Header
The frame header has a variable size, with a m nimum of 2 bytes and

up to 14 bytes depending on optional paraneters. The structure of
Frame_Header is as follows:

o e e e e e e e oo Fom e +
| Frame_Header Descriptor | 1 byte |
Fom e e e e e e aao - S +
| [Wndow_Descri ptor] | 0-1 byte
o e e e e e e oo oo SR +
| [Dictionary | D | 0-4 bytes
o e e e e e e e oo Fom e +
| [Frame_Content_Size] | 0-8 bytes
Fom e e e e e e aao - S +

Col l et & Kucherawy I nf or mati onal [Page 7]

RFC 8478 application/zstd Cct ober 2018

3.1.1.1.1. Franme_Header _Descri pt or

The first header’s byte is called the Frame_Header_Descriptor. It
descri bes which other fields are present. Decoding this byte is
enough to tell the size of Frane_Header

S S +
| Bit Nunber | Field Nanme |
. T +
| 7-6 | Frame_Content_Size Fl ag
S o e e e e e e e +
| 5 | Single_Segnent_Flag

S TRy T +
| 4 | (unused) |
. Foe e m e e eeeeeciaeaaaas +
| 3 | (reserved) |
S o e e e e e e e +
| 2 | Content_Checksum Fl ag

S TRy S +
| 1-0 | Dictionary_ID Fl ag |
. N +

In this table, bit 7 is the highest bit, while bit 0 is the | owest
one.

3.1.1.1.1.1. Frane_Content_Size Fl ag

This is a 2-bit flag (equival ent to Frame_Header_Descriptor right-
shifted 6 bits) specifying whether Frame_Content_Size (the
deconpressed data size) is provided within the header. Flag_ Val ue
provi des FCS Field Size, which is the nunber of bytes used by
Frame_Content Size according to the followi ng table:

T B R B L
| Flag_Val ue | 0 | 2] 2| 3
oo o - E - B e
| FCS Field Size | Oor 1| 2| 4| 8
o Fomm e e

When Flag Value is 0, FCS Field_Size depends on Single_Segnent_ Fl ag:
If Single_Segnent Flag is set, FCS Field_Size is 1. Qherwi se,
FCS Field Size is 0; Frame_Content_Size is not provided.

Col l et & Kucherawy I nf or mati onal [Page 8]

RFC 8478 application/zstd Cct ober 2018

3.1.1.1.1.2. Single_Segrment_Fl ag

If this flag is set, data nust be regenerated within a single
conti nuous nenory segment.

In this case, Wndow Descriptor byte is skipped, but

Frame_Content _Size is necessarily present. As a consequence, the
decoder nust allocate a nmenory segnment of size equal or |arger than
Frame_Cont ent _Si ze.

In order to protect the decoder from unreasonabl e nenory
requirenents, a decoder is allowed to reject a conpressed frane that
requests a nmenory size beyond the decoder’s authorized range.

For broader conpatibility, decoders are recomended to support nenory
sizes of at least 8 MB. This is only a recommendati on; each decoder
is free to support higher or lower limts, depending on |oca
l'imtations.

3.1.1.1.1.3. Unused Bit

A decoder conpliant with this specification version shall not
interpret this bit. It mght be used in a future version, to signa
a property that is not mandatory to properly decode the frane. An
encoder conpliant with this specification nust set this bit to zero.

3.1.1.1.1.4. Reserved Bit

This bit is reserved for sone future feature. |Its value nust be
zero. A decoder conpliant with this specification version nust
ensure it is not set. This bit my be used in a future revision, to
signal a feature that nust be interpreted to decode the frane
correctly.

3.1.1.1.1.5. Content_Checksum Fl ag

If this flag is set, a 32-bit Content_ Checksumwi || be present at the
frane’s end. See the description of Content_ Checksum above.

Col l et & Kucherawy I nf or mati onal [Page 9]

RFC 8478 application/zstd Cct ober 2018

3.1.1.1.1.6. Dictionary_ID Flag

This is a 2-bit flag (= Frane_Header _Descriptor & 0x3) indicating
whet her a dictionary IDis provided within the header. It also
specifies the size of this field as DID Field_Size:

e R
| Flag_Val ue | O] 1| 2| 3
oo R R epepa
| DIDField Size| O] 2| 2| 4
o e e oo e S

3.1.1.1.2. W ndow Descri ptor

Thi s provi des guarantees about the mini mum menory buffer required to
deconpress a frame. This information is inmportant for decoders to
al | ocate enough menory.

The W ndow Descriptor byte is optional. Wen Single Segnent Flag is
set, Wndow Descriptor is not present. In this case, Wndow Size is
Frame_Content _Size, which can be any value fromO to 2"64-1 bytes (16
ExaByt es) .

The m ni mum menory buffer size is called Wndow Size. It is
descri bed by the follow ng fornul ae:

wi ndowLog = 10 + Exponent;

wi ndowBase = 1 << w ndowLog;

wi ndowAdd = (wi ndowBase / 8) * Manti ssa;
W ndow_Si ze = wi ndowBase + w ndowAdd;

The mini mum Wndow_Size is 1 KB. The naxi num W ndow_Si ze is (1<<41l)
+ 7*(1<<38) bytes, which is 3.75 TB.

In general, |larger Wndow Size values tend to inprove the conpression
rati o, but at the cost of increased nenory usage.

To properly decode conpressed data, a decoder will need to allocate a
buf fer of at |east Wndow Size bytes.

Col l et & Kucherawy I nf or mati onal [Page 10]

RFC 8478 application/zstd Cct ober 2018

In order to protect decoders from unreasonabl e nenory requirenments, a
decoder is allowed to reject a conpressed frane that requests a
menory size beyond decoder’s authorized range.

For inproved interoperability, it’s recommended for decoders to
support val ues of Wndow Size up to 8 MB and for encoders not to

generate franes requiring a Wndow _Size larger than 8 MB. It’'s
nerely a reconmendati on though, and decoders are free to support
larger or lower limts, depending on local limtations.

3.1.1.1.3. Dictionary_ID

This is a variable size field, which contains the ID of the
dictionary required to properly decode the frane. This field is
optional. When it’'s not present, it’'s up to the decoder to know
whi ch dictionary to use

Dictionary ID field size is provided by DID Field_Size.

DID Field Size is directly derived fromthe val ue of
Dictionary ID Flag. One byte can represent an ID 0-255; 2 bytes can
represent an I D 0-65535; 4 bytes can represent an | D 0-4294967295.
Format is little-endian.

It is permtted to represent a snall ID (for exanple, 13) with a
| arge 4-byte dictionary ID, even if it is less efficient.

Wthin private environnments, any dictionary |ID can be used. However,
for frames and dictionaries distributed in public space,
Dictionary_ID nmust be attributed carefully. The follow ng ranges are
reserved for use only with dictionaries that have been registered
with | ANA (see Section 6.3):

| ow range: <= 32767
hi gh range: >= (1 << 31)

Any other value for Dictionary ID can be used by private arrangenent
bet ween partici pants.

Any payl oad presented for deconpression that references an
unregi stered reserved dictionary ID results in an error

Col l et & Kucherawy I nf or mati onal [Page 11]

RFC 8478

3.1.1.1.4. Frane Cont

This is the origina

application/zstd

ent Size

(unconpressed) size.

Cct ober 2018

This infornation is

optional. Frame_Content_ Size uses a variable nunber of bytes,

provi ded by FCS Field_Size.

of Frame_Content _Si

present), 1, 2, 4, or 8 bytes.
oo e +
| FCS Field Size | Range
o m e e o oo +
| 0 | unknown |
oo oo +
| 1 | 0 - 255
e oo e +
| 2 | 256 - 65791
o m e e o oo +
| 4 | 0 - 27232 - 1
oo oo +
| 8 | 0- 2764 - 1
e oo e +

FCS Field_Size is provided by the val ue

ze Flag. FCS Field _Size can be equal to 0 (not

Frame_Content _Size format is little-endian. Wen FCS Field Size is
1, 4, or 8 bytes, the value is read directly. Wen FCS Field Size is
2, the offset of 256 is added. |It's allowed to represent a snall
size (for exanple 18) using any conpatible variant.

3.1.1.2. Blocks

Col l et & Kucherawy

After Magi c_Nunber and Frane_Header, there are sonme nunber of bl ocks.
Each frame nmust have at |east 1 block, but there is no upper limt on
t he number of bl ocks per frane.

The structure of a block is as foll ows:

R Fom e e e oo oo - +
| Bl ock Header | Bl ock_ Content |
o e ok oo +
| 3 bytes | n bytes |
Fomm oo o - Fom e e e e oo - +

I nf or mati onal [Page 12]

RFC 8478 application/zstd Cct ober 2018

Bl ock_Header uses 3 bytes, witten using little-endian convention
It contains three fields:

B RS B RS B RS +
| Last_Block | Block _Type | Block_Size
o m oo - - o m oo - - o m oo - - +
| bit 0 | bits 1-2 | bits 3-23
e e e +

3.1.1.2.1. Last_Block

The | owest bit (Last_Block) signals whether this block is the | ast
one. The frame will end after this last block. It may be foll owed
by an optional Content_ Checksum (see Section 3.1.1).

3.1.1.2.2. Block_Type

The next 2 bits represent the Bl ock _Type. There are four bl ock
types:

e . +
| Val ue | Bl ock_Type
TSR o e e e e e oo - +
| 0 | Raw_BIl ock

S R +
| 1 | RLE_BI ock

e . +
| 2 | Compressed_ Bl ock
TSR o e e e e e oo - +
| 3 | Reserved |
S R +

Raw_Bl ock: This is an unconpressed bl ock. Bl ock_Content contains
Bl ock_Si ze bytes.

RLE Block: This is a single byte, repeated Bl ock_Size tines.
Bl ock_Content consists of a single byte. On the deconpression
side, this byte nust be repeated Bl ock_Size tines.

Conpressed_Block: This is a conmpressed bl ock as described in
Section 3.1.1.3. Block_Size is the I ength of Bl ock_Content,
nanely the conpressed data. The deconpressed size is not known,
but its maxi mum possi bl e value is guaranteed (see bel ow).

Reserved: This is not a block. This value cannot be used with the

current specification. |If such a value is present, it is
consi dered to be corrupt data.

Col l et & Kucherawy I nf or mati onal [Page 13]

RFC 8478 application/zstd Cct ober 2018

3.1.1.2.3. Block_Size

The upper 21 bits of Block_Header represent the Bl ock_Size.

Bl ock_Size is the size of the block excluding the header. A block
can contain any nunber of bytes (even zero), up to

Bl ock_Maxi mum Deconpressed_Si ze, which is the snallest of:

o Wndow Size
o 128 KB

A Conpressed Bl ock has the extra restriction that Bl ock _Size is

al ways strictly less than the deconpressed size. |If this condition
cannot be respected, the bl ock nust be sent unconpressed instead
(i.e., treated as a Raw Bl ock).

3.1.1.3. Conpressed Bl ocks

To deconpress a conpressed bl ock, the conpressed size nust be
provided fromthe Bl ock Size field within Bl ock Header

A compressed bl ock consists of two sections: a Literals
Section (Section 3.1.1.3.1) and a

Sequences_Section (Section 3.1.1.3.2). The results of the two
sections are then conbined to produce the deconpressed data in
Sequence Execution (Section 3.1.1.4).

To decode a conpressed bl ock, the follow ng el ements are necessary:

o Previous decoded data, up to a distance of Wndow Size, or the
begi nni ng of the Frane, whichever is smaller. Single Segnent Flag
will be set in the latter case.

o List of "recent offsets" fromthe previous Conpressed_Bl ock

o The previous Huffman tree, required by Treel ess Literals_Bl ock
type.

o Previous Finite State Entropy (FSE) decodi ng tables, required by
Repeat Mde, for each symbol type (literals |engths, match
| engt hs, offsets).

Not e t hat decoding tables are not always fromthe previous
Conpr essed_Bl ock:

o Every decoding table can cone froma dictionary.

Col l et & Kucherawy I nf or mati onal [Page 14]

RFC 8478 application/zstd Cct ober 2018

o The Huffrman tree cones fromthe previous
Conpressed_Literal s Bl ock.

3.1.1.3.1. Literals_Section_Header

Al literals are regrouped in the first part of the block. They can
be decoded first and then copied during Sequence Execution (see
Section 3.1.1.4), or they can be decoded on the flow during Sequence
Executi on.

Literal s can be stored unconpressed or conpressed using Huffnman
prefix codes. Wen conpressed, an optional tree description can be
present, followed by 1 or 4 streans.

e +
| Literal s_Section_Header |
o e e e e e e e e e e e am o +
| [Huffrman_Tree_Description] |
oo +
| [Junp_Tabl e] |
oo +
| Stream 1 |
o e e e e e e e e e e e am o +
| [Stream 2] |
oo +
| [Stream 3] |
oo +
| [Stream 4] |
o e e e e e e e e e e e am o +

3.1.1.3.1.1. Literals_Section_Header

This field describes howliterals are packed. It's a byte-aligned
variable-size bit field, ranging from1 to 5 bytes, using little-
endi an conventi on.

e Fom oo +
| Literals_Block_Type | 2 bits |
o e e e R +
| Si ze_For mat | 1-2 bits |
T TSR +
| Regenerated_Size | 5-20 bits |
e Fom oo +
| [Conpressed Size] | 0-18 bhits |
o e e e R +

In this representation, bits at the top are the | owest bits.

Col l et & Kucherawy I nf or mati onal [Page 15]

RFC 8478 application/zstd Cct ober 2018

The Literals Block Type field uses the two |owest bits of the first
byte, describing four different block types:

o m e e e e e e e e e o B +
| Literal s_Bl ock_Type | Val ue

oo e e e oo oo - E +
| Raw Literal s Bl ock | 0 |
o m e e e e e eee oo s Fommm o - +
| RLE_Literal s_Bl ock | 1 |
o m e e e e e e e e e o B +
| Compressed_Literal s_Bl ock | 2

oo e e e oo oo - E +
| Treeless Literals Block | 3

o m e e e e e eee oo s Fommm o - +

Raw Literal s_Block: Literals are stored unconpressed.
Literal s_Section_Content is Regenerated_Size.

RLE Literals Block: Literals consist of a single-byte value repeated
Regenerated Size tinmes. Literals_Section Content is 1

Conpressed_Literals_Block: This is a standard Huf f man-conpressed
bl ock, starting with a Huffman tree description. See details
below. Literals_Section Content is Conpressed_Size.

Treel ess_Literal s_Block: This is a Huffman-conpressed bl ock, using
the Huffman tree fromthe previous Conpressed_Literals Block, or a
dictionary if there is no previous Huffman-conpressed literals
bl ock. Huffrman_Tree_ Description will be skipped. Note that if
this node is triggered without any previous Huf fman-table in the
frane (or dictionary, per Section 5), it should be treated as data
corruption. Literals Section Content is Conpressed_Size.

The Size Format is divided into two famlies:

o For Raw Literals Block and RLE Literals Block, it’'s only necessary
to decode Regenerated _Size. There is no Conpressed_Size field.

o For Conpressed_Block and Treeless Literals Block, it’'s required to
decode both Conpressed_Si ze and Regenerated_Si ze (the deconpressed
size). It’s also necessary to decode the nunber of streans (1 or
4).

For val ues spanni ng several bytes, the convention is little endian

Size Format for Raw Literals Block and RLE Literals Bl ock uses 1 or 2
bits. Its value is (Literals_Section_Header[0] >>2) & 0x3.

Col l et & Kucherawy I nf or mati onal [Page 16]

RFC 8478 application/zstd Cct ober 2018

Size Format == 00 or 10: Size Format uses 1 bit. Regenerated_Size
uses 5 bits (value 0-31). Literals_Section Header uses 1 byte.
Regenerated_Si ze = Literal _Section_Header[0] >>3.

Size Format == 01: Size_Format uses 2 bits. Regenerated_Size uses
12 bits (values 0-4095). Literals_Section_Header uses 2 bytes.
Regenerated_Si ze = (Literal s_Section_Header[0]>>4) +
(Literal s_Section_Header[1] <<4).

Size Format == 11: Size_Format uses 2 bits. Regenerated_Size uses
20 bits (values 0-1048575). Literals_Section_Header uses 3 bytes.
Regenerated_Si ze = (Literal s_Section_Header[0]>>4) +
(Literal s_Section_Header[1]<<4) + (Literals_Section_Header[2] <<12)

Only Stream 1 is present for these cases. Note that it is pernmtted
to represent a short value (for example, 13) using a | ong format,
even if it’s less efficient.

Size Format for Conpressed Literals Block and Treel ess_Literals Bl ock
al ways uses 2 bhits.

Size Format == 00: A single stream Both Regenerated_Si ze and
Conpressed_Si ze use 10 bits (val ues 0-1023).
Literal s_Section_Header uses 3 bytes.

Size Format == 01: 4 streams. Both Regenerated_Size and
Conpressed_Si ze use 10 bits (val ues 0-1023).
Literal s_Section_Header uses 3 bytes.

Size Format == 10: 4 streanms. Both Regenerated_Size and
Conpressed_Si ze use 14 bits (val ues 0-16383).
Literal s_Section_Header uses 4 bytes.

Size Format == 11: 4 streams. Both Regenerated_Size and
Conpressed_Si ze use 18 bits (val ues 0-262143).
Literal s_Section_Header uses 5 bytes.

Both the Conpressed_Size and Regenerated Size fields followlittle-
endi an convention. Note that Conpressed_Size includes the size of
the Huf fman_Tree_Description when it is present.

3.1.1.3.1.2. Raw Literals_ Bl ock
The data in Stream 1l is Regenerated _Size bytes long. It contains the

raw literals data to be used during Sequence Execution
(Section 3.1.1.3.2).

Col l et & Kucherawy I nf or mati onal [Page 17]

RFC 8478 application/zstd Cct ober 2018

3.1.1.3.1.3. RLE Literals_Block

Stream 1 consists of a single byte that should be repeated
Regenerated_Size times to generate the decoded literals.

3.1.1.3.1.4. Conpressed _Literals Block and Treel ess_Literals_Bl ock

Bot h of these nodes contain Huffnan-encoded data. For
Treel ess_Literal s_Bl ock, the Huffman table cones fromthe previously
conpressed literals block, or froma dictionary; see Section 5.

3.1.1.3.1.5. Huffman_Tree_Description

This section is only present when the Literals Block Type type is
Conpressed_Literals_Block (2). The format of

Huf f man_Tree_Description can be found in Section 4.2.1. The size of
Huf f man_Tree_Description is determ ned during the decodi ng process.
It nust be used to determ ne where streans begin

Total _Streans_Si ze = Conpressed_Si ze
- Huf fman_Tree_Description_Size

3.1.1.3.1.6. Junp_Tabl e

The Junp_Table is only present when there are 4 Huf f man- coded
streans.

(Rem nder: Huf f man-conpressed data consists of either 1 or 4 Huffman-
coded streans.)

If only 1 streamis present, it is a single bitstream occupying the
entire remaining portion of the literals block, encoded as described
within Section 4.2.2.

If there are 4 streans, Literals_Section_Header only provides enough
i nformati on to know t he deconpressed and conpressed sizes of all 4
streans conbi ned. The deconpressed size of each streamis equal to
(Regenerated_Si ze+3)/ 4, except for the |last stream which may be up
to 3 bytes smaller, to reach a total deconpressed size as specified
i n Regenerated_Si ze.

The conpressed size of each streamis provided explicitly in the
Junp_Table. The Junp _Table is 6 bytes |long and consists of three
2-byte little-endian fields, describing the conpressed sizes of the
first 3 streans. Streamt_Size is conmputed from Total _Streans_Si ze
m nus sizes of other streans.

Col l et & Kucherawy I nf or mati onal [Page 18]

RFC 8478 application/zstd Cct ober 2018

Streamd_Size = Total _Streans_Size - 6
- Streanl_Size - StreanR_Size
- StreanB_Si ze

Note that if Streaml Size + StreanR Size + StreanB_Si ze exceeds
Total _Streans_Size, the data are considered corrupted

Each of these 4 bitstreans is then decoded i ndependently as a
Huf f man- Coded stream as described in Section 4.2.2.

3.1.1.3.2. Sequences_Section

A conpressed block is a succession of sequences. A sequence is a
literal copy command, followed by a match copy command. A litera
copy conmand specifies a length. It is the nunber of bytes to be
copied (or extracted) fromthe Literals Section. A match copy
conmand specifies an offset and a | ength.

When all sequences are decoded, if there are literals left in the
literals section, these bytes are added at the end of the bl ock

This is described in nbre detail in Section 3.1.1.4.

The Sequences_Section regroups all synbols required to decode
conmands. There are three synbol types: literals lengths, offsets,
and match | engths. They are encoded together, interleaved, in a
single "bitstreant.

The Sequences_Section starts by a header, followed by optiona
probability tables for each synbol type, followed by the bitstream

Sequences_Secti on_Header
[Literal s_Length_Tabl e]
[OFfset_Tabl €]

[Mat ch_Lengt h_Tabl e]
bi t St ream

To decode the Sequences_Section, it’'s necessary to knowits size.
This size is deduced fromthe size of the Literals_Section
Sequences_Section_Size = Bl ock_Size - Literal s_Section_Header -
Literal s_Section_Cont ent

Col l et & Kucherawy I nf or mati onal [Page 19]

RFC 8478 application/zstd Cct ober 2018

3.1.1.3.2.1. Sequences_Section_Header
Thi s header consists of two itemns:
o Nunber_of _Sequences
o Synbol Conpressi on_Mdes

Nunber _of Sequences is a variable size field using between 1 and 3
bytes. If the first byte is "byte0":

o if (byte0 == 0): there are no sequences. The sequence section
stops here. Deconpressed content is defined entirely as Literals
Section content. The FSE tables used in Repeat_Mde are not
updat ed.

o if (byte0 < 128): Nunber_of _Sequences byteO0. Uses 1 byte.

o if (byte0 < 255): Nunber_of _Sequences = ((byte0 - 128) << 8) +
bytel. Uses 2 bytes.

o if (byte0 == 255): Nunber_of Sequences = bytel + (byte2 << 8) +
Ox7F00. Uses 3 bytes.

Synbol _Conpression_Mdes is a single byte, defining the conpression
node of each synbol type

S o e e e e e e e o +
| Bit Nunber | Fi el d Nane
T oo - +
| 7-6 | Literal Lengths_Mode

Fom e o a o +
| 5-4 | O fsets_Mode
S o e e e e e e e o +
| 3-2 | Match_Lengt hs_Mode
T oo - +
| 1-0 | Reserved |
Fom e o a o +

The |ast field, Reserved, nust be all zeroes.

Col l et & Kucherawy I nf or mati onal [Page 20]

RFC 8478 application/zstd Cct ober 2018

Literal s_Lengths Mdde, Ofsets Mde, and Match_Lengt hs_Mde defi ne
the Conpression_Mde of literals lengths, offsets, and natch | engths
synbol s, respectively. They follow the same enuneration

Fomm - T +
| Value | Conpression_Mde
Fomm o - e +
| 0 | Pr edef i ned_Mode

R o e e e +
| 1 | RLE_Mbode |
Fomm - T +
| 2 | FSE_Conpressed_Mde
Fomm o - e +
| 3 | Repeat Mbde

R o e e e +

Predefi ned_Mode: A predefined FSE (see Section 4.1) distribution
table is used, as defined in Section 3.1.1.3.2.2. No distribution
table will be present.

RLE Mbde: The table description consists of a single byte, which
contains the synbol’s value. This synbol will be used for al
sequences.

FSE Conpressed Mdde: Standard FSE conpression. A distribution table
will be present. The format of this distribution table is
described in Section 4.1.1. Note that the naxi num al |l owed
accuracy log for literals length and match length tables is 9, and
the maxi num accuracy log for the offsets table is 8 This npode
nmust not be used when only one synbol is present; RLE Mbde shoul d
be used instead (although any other nbde will work).

Repeat _Mdyde: The table used in the previous Conpressed Block with
Nunber OF Sequences > 0 will be used again, or if this is the
first block, the table in the dictionary will be used. Note that
this includes RLE Mbde, so if Repeat Mde foll ows RLE Mode, the
sanme synbol will be repeated. It also includes Predefined_Mde,
in which case Repeat_Mde will have the same outcone as
Predefined_Mdde. No distribution table will be present. |If this
node is used wi thout any previous sequence table in the frame (or
di ctionary; see Section 5) to repeat, this should be treated as
corruption.

Col l et & Kucherawy I nf or mati onal [Page 21]

RFC 8478 application/zstd Cct ober 2018

3.1.1.3.2.1.1. Sequence Codes for Lengths and O fsets

Each synbol is a code in its own context, which specifies Baseline
and Nurmber _of Bits to add. Codes are FSE conpressed and interl eaved
with raw additional bits in the sane bitstream

Literals length codes are values ranging fromO0 to 35 inclusive.
They define lengths fromO to 131071 bytes. The literals length is
equal to the decoded Baseline plus the result of reading
Nunmber of Bits bits fromthe bitstream as a little-endi an val ue.

Col l et & Kucherawy I nf or mati onal [Page 22]

2018

Cct ober

application/zstd

RFC 8478

g

Nunber of Bits

Basel i ne |

gt h_Code

Literals Len

e

length |

e

0-15

1

16

1

18 |

17

e

1

18

1

19

2

24 |

20

e

3

22

3

40 |

23

e

4

24

6

25

7

128 |

26

e

8

27

9

28

10 |

1024 |

29

e

11

|
e

2048

30

12

|
e

4096

31

13 |

8192 |

32

e

14

|
e

16384

33

15

|
e

32768

34

16 |

65536

35

e

[Page 23]

| nf or mat i ona

Col l et & Kucherawy

RFC 8478 application/zstd Cct ober 2018

Match | ength codes are values ranging fromO to 52 inclusive. They
define lengths from3 to 131074 bytes. The match length is equal to
the decoded Baseline plus the result of reading Nunber_of Bits bits
fromthe bitstream as a little-endian val ue.

Col l et & Kucherawy I nf or mati onal [Page 24]

2018

Cct ober

application/zstd

RFC 8478

i

Nunber of Bits

Basel i ne

oo e e e e e e e e e e e ee e e e+

gt h_Code

Mat ch_Len

0

gth_Code + 3

Mat ch_Len

e

0-31

1

35

32

1

| 37

33

e

39 1

34

41 1

35

2

43 |

36

e

47

51 3

38

3

59 |

39

e

4

67

40

4

83

41

5

99 |

42

e

131 7

43

259 8

44

9

| 515

45

e

10

1027

46

2051 11

47

| 4099 | 12 |

48

e

13

8195

49

14

16387

50

15 |

32771 |

51 |

e

16

65539

52

[Page 25]

| nf or mat i ona

Col l et & Kucherawy

RFC 8478 application/zstd Cct ober 2018

O fset codes are values ranging fromO to N

A decoder is free to limt its maxi mum supported value for N
Support for values of at least 22 is reconmended. At the time of
this witing, the reference decoder supports a maxi mum N val ue of 31

An of fset code is also the nunber of additional bits to read in
l[ittle-endian fashion and can be translated into an O fset_ Val ue
using the follow ng fornul as:

O fset_Value = (1 << offsetCode) + readNBits(offsetCode);
if (OFfset_Value > 3) Ofset = Ofset_Value - 3;

Thi s means that maxi mum Offset _Value is (2*(N+1))-1, supporting back-
reference distance up to (2*(N+1))-4, but it is limted by the
maxi mum back-ref erence di stance (see Section 3.1.1.1.2).

O fset Value from1l to 3 are special: they define "repeat codes".
This is described in nore detail in Section 3.1.1.5.

3.1.1.3.2.1.2. Decoding Sequences

FSE bitstreans are read in reverse of the direction they are witten.
In zstd, the conpressor wites bits forward into a block, and the
deconpressor nust read the bitstream backwards.

To find the start of the bitstream it is therefore necessary to know
the of fset of the last byte of the block, which can be found by
counting Block_Size bytes after the bl ock header

After witing the last bit containing information, the conpressor
wites a single 1 bit and then fills the byte with 0-7 zero bits of
paddi ng. The last byte of the conpressed bitstream cannot be zero
for that reason.

When deconpressing, the last byte containing the padding is the first
byte to read. The deconpressor needs to skip 0-7 initial zero bits
until the first 1 bit occurs. Afterwards, the useful part of the

bi t st ream begi ns.

FSE decoding requires a 'state’ to be carried fromsynbol to synbol.
For nore expl anation on FSE decodi ng, see Section 4. 1.

For sequence decoding, a separate state keeps track of each litera

| engths, offsets, and match | engths synbols. Sonme FSE primitives are
al so used. For nore details on the operation of these primtives,
see Section 4. 1.

Col l et & Kucherawy I nf or mati onal [Page 26]

RFC 8478 application/zstd Cct ober 2018

The bitstreamstarts with initial FSE state val ues, each using the
requi red nunber of bits in their respective accuracy, decoded
previously fromtheir normalized distribution. It starts with
Literals_Length_State, followed by Ofset_State, and finally

Mat ch_Lengt h_St at e.

Note that all values are read backward, so the 'start’ of the
bitstreamis at the highest position in nmenory, inmediately before
the last 1 bit for padding.

After decoding the starting states, a single sequence is decoded
Nunmber OF Sequences tinmes. These sequences are decoded in order from
first to last. Since the conpressor wites the bitstreamin the
forward direction, this neans the conpressor nust encode the
sequences starting with the |Iast one and ending with the first.

For each of the synbol types, the FSE state can be used to determne
the appropriate code. The code then defines the Baseline and
Nunber of Bits to read for each type. The description of the codes
for how to deternmi ne these values can be found in

Section 3.1.1.3.2.1.

Decoding starts by reading the Number_of Bits required to decode
offset. It does the same for Match_Length and then for
Literals_Length. This sequence is then used for Sequence Execution
(see Section 3.1.1.4).

If it is not the |ast sequence in the block, the next operation is to
update states. Using the rules pre-calculated in the decodi ng
tables, Literals_Length State is updated, followed by
Match_Length_State, and then O fset State. See Section 4.1 for
details on how to update states fromthe bitstream

This operation will be repeated Number_of Sequences times. At the
end, the bitstreamshall be entirely consunmed; otherw se, the
bitstreamis considered corrupted

3.1.1.3.2.2. Default Distributions
I f Predefined_Mde is selected for a synbol type, its FSE decoding
table is generated froma predefined distribution table defined here.

For details on howto convert this distribution into a decoding
tabl e, see Section 4. 1.

Col l et & Kucherawy I nf or mati onal [Page 27]

RFC 8478 application/zstd Cct ober 2018

3.1.1.3.2.2.1. Literals Length

The decodi ng table uses an accuracy log of 6 bits (64 states).

short literal sLength_defaul tDistribution[36] =
{4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2,2, 2, 3, 2,1, 1, 1, 1, 1
-1,-1,-1,-1
H

3.1.1.3.2.2.2. Match Length
The decodi ng table uses an accuracy log of 6 bits (64 states).

short matchLengt hs_defaul t Di stribution[53]

{1 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
i, 1,1, 1 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1 1 12 1, 1 11, 1, 1, 1, 1,-1,-1
-1,-1,-1,-1,-1

3.1.1.3.2.2.3. O fset Codes

The decoding table uses an accuracy log of 5 bits (32 states), and
supports a maxi rum N val ue of 28, allow ng offset values up to
536, 870, 908.

I f any sequence in the conpressed bl ock requires a larger offset than
this, it’s not possible to use the default distribution to represent
it.

short offset Codes_defaul tDistribution[29] =

{ 11 11 11 11 11 11 21 21 21 11 11 11 7 11 11 11
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1

b

3.1.1.4. Sequence Execution

1
-1

Once literals and sequences have been decoded, they are conbined to
produce the decoded content of a bl ock

Each sequence consists of a tuple of (literals_|ength, offset val ue,
mat ch_| ength), decoded as described in the

Sequences_Section (Section 3.1.1.3.2). To execute a sequence, first
copy literals_length bytes fromthe decoded literals to the output.

Col l et & Kucherawy I nf or mati onal [Page 28]

RFC 8478 application/zstd Cct ober 2018

Then, match_|ength bytes are copied from previ ous decoded data. The
of fset to copy fromis deternined by offset val ue:

o if Ofset _Value > 3, then the offset is Ofset_ Value - 3;

o if OfFfset Value is from1-3, the offset is a special repeat offset
value. See Section 3.1.1.5 for how the offset is determned in
this case.

The offset is defined as fromthe current position (after copying the
literals), so an offset of 6 and a match length of 3 means that 3

byt es should be copied from®6 bytes back. Note that all offsets

| eading to previously decoded data nmust be snaller than Wndow Size
defined in Frame_Header_Descriptor (Section 3.1.1.1.1).

3.1.1.5. Repeat Ofsets

As seen above, the first three values define a repeated offset; we
will call them Repeated Ofsetl, Repeated Ofset2, and

Repeated Offset3. They are sorted in recency order, with
Repeated_Of fset1 meani ng "nobst recent one".

If offset_value is 1, then the offset used is Repeated Ofsetl, etc.

There is one exception: Wen the current sequence's literals |ength
is 0, repeated offsets are shifted by 1, so an offset _value of 1
neans Repeated O fset2, an offset_value of 2 means Repeated O f set 3,
and an offset_value of 3 neans Repeated Offsetl - 1 byte.

For the first block, the starting offset history is populated with
the follow ng val ues: Repeated Offsetl (1), Repeated Ofset2 (4), and
Repeated Offset3 (8), unless a dictionary is used, in which case they
conme fromthe dictionary.

Then each bl ock gets its starting offset history fromthe ending
val ues of the nobst recent Conpressed Bl ock. Note that bl ocks that
are not Conpressed Bl ock are skipped; they do not contribute to
of fset history.

The newest offset takes the lead in offset history, shifting others
back (up to its previous place if it was already present). This
neans that when Repeated Offsetl (nobst recent) is used, history is
unnodi fied. Wen Repeated Offset2 is used, it is swapped with
Repeated_Ofsetl. |If any other offset is used, it becones
Repeated_Offsetl, and the rest are shifted back by 1.

Col l et & Kucherawy I nf or mati onal [Page 29]

RFC 8478 application/zstd Cct ober 2018

3.1.2. Skippable Franes

. . e +
| Magi c_Number | Frame_Size | User_Data
oo S TSR +
| 4 bytes | 4 bytes | n bytes
. S TR S +

Ski ppabl e frames allow the insertion of user-defined netadata into a
fl ow of concatenated franes.

Ski ppabl e franmes defined in this specification are conpatible with
ski ppabl e frames in [Lz4].

From a conpliant decoder perspective, skippable frames sinply need to
be ski pped, and their content ignored, resum ng decoding after the
ski ppabl e frane.

It should be noted that a skippable frane can be used to watermark a
stream of concatenated franes enbeddi ng any kind of tracking

i nformation (even just a Universally Unique Identifier (UUD)).

Users wary of such possibility should scan the stream of concatenated
franes in an attenpt to detect such franmes for analysis or renoval.

The fields are:

Magi c_Nunber: 4 bytes, little-endian format. Value: 0x184D2A5?,
whi ch neans any val ue from Ox184D2A50 to 0x184D2A5F. Al 16
values are valid to identify a skippable frame. This
specification does not detail any specific tagging nethods for
ski ppabl e franes.

Frame_Size: This is the size, in bytes, of the follow ng User_Data
(wi thout including the magi c nunber nor the size field itself).
This field is represented using 4 bytes, little-endian format,
unsi gned 32 bits. This nmeans User _Data can’'t be bigger than
(2732-1) bytes.

User_Data: This field can be anything. Data will just be skipped by
t he decoder.

4. Entropy Encoding
Two types of entropy encoding are used by the Zstandard format: FSE
and Huffrman coding. Huffman is used to conpress literals, while FSE

is used for all other symbols (Literals_Length_Code,
Mat ch_Lengt h_Code, and offset codes) and to conpress Huffnman headers.

Col l et & Kucherawy I nf or mati onal [Page 30]

RFC 8478 application/zstd Cct ober 2018

4.1. FSE

FSE, short for Finite State Entropy, is an entropy codec based on
[ANS]. FSE encodi ng/ decoding involves a state that is carried over
bet ween synbol s, so decodi ng nust be done in the opposite direction
as encoding. Therefore, all FSE bitstreans are read fromend to
begi nning. Note that the order of the bits in the streamis not
reversed; they are sinply read in the reverse order from which they
were witten.

For additional details on FSE, see Finite State Entropy [FSE].

FSE decodi ng i nvol ves a decoding table that has a power of 2 size and
contains three elenents: Synbol, NumBits, and Baseline. The base 2
logarithmof the table size is its Accuracy_Log. An FSE state val ue
represents an index in this table.

To obtain the initial state value, consune Accuracy Log bits fromthe
streamas a little-endian value. The next synbol in the streamis
the Symbol indicated in the table for that state. To obtain the next
state val ue, the decoder should consune NumBits bits fromthe stream
as a little-endian value and add it to Baseli ne.

4.1.1. FSE Tabl e Description

To decode FSE streams, it is necessary to construct the decoding
table. The Zstandard format encodes FSE table descriptions as
descri bed here.

An FSE distribution table describes the probabilities of all synbols
fromO to the | ast present one (included) on a nornalized scal e of
(1 << Accuracy _Log). Note that there nust be two or nore synbols
with non-zero probability.

A bitstreamis read forward, in little-endian fashion. It is not
necessary to know its exact size, since the size will be discovered
and reported by the decoding process. The bitstreamstarts by
reporting on which scale it operates. |If |owdbits designates the
lowest 4 bits of the first byte, then Accuracy_Log = |lowdbits + 5.

Col l et & Kucherawy I nf or mati onal [Page 31]

RFC 8478 application/zstd Cct ober 2018

This is foll owed by each synbol value, fromO to the |ast present
one. The nunber of bits used by each field is variable and depends
on:

Remai ni ng probabilities + 1: For exanple, presum ng an Accuracy_Log
of 8, and presuning 100 probabilities points have al ready been
di stributed, the decoder may read any value fromO to
(256 - 100 + 1) == 157, inclusive. Therefore, it must read
| 0g2sup(157) == 8 bits.

Val ue decoded: Small values use 1 fewer bit. For exanple, presum ng
values fromO to 157 (inclusive) are possible, 255 - 157 = 98
values are remaining in an 8-bit field. The first 98 val ues
(hence fromO to 97) use only 7 bits, and values from98 to 157
use 8 bhits. This is achieved through this schene:

S Fom e e e oo - TSR +
| Value Read | Value Decoded | Bits Used

Fom ek o Fom oo +
| 0- 97 | 0 - 97 | 7
T oo R +
| 98 - 127 | 98 - 127 | 8
S Fom e e e oo - TSR +
| 128 - 225 | 0 - 97 | 7

Fom ek o Fom oo +
| 226 - 255 | 128 - 157 | 8
T oo R +

Synbol probabilities are read one by one, in order. The probability
is obtained from Val ue decoded using the fornula P = Value - 1. This
neans the value 0 becones the negative probability -1. This is a
special probability that nmeans "less than 1". |Its effect on the
distribution table is described below. For the purpose of
calculating total allocated probability points, it counts as 1

When a synbol has a probability of zero, it is followed by a 2-bit
repeat flag. This repeat flag tells how nany probabilities of zeroes
follow the current one. It provides a nunmber ranging fromO to 3.

If it is a 3, another 2-bit repeat flag foll ows, and so on

VWen the | ast synbol reaches a cumnul ated total of

(1 << Accuracy_Log), decoding is conplete. If the |last synbol nmkes
the cunul ated total go above (1 << Accuracy_Log), distribution is
consi dered corrupted.

Col l et & Kucherawy I nf or mati onal [Page 32]

RFC 8478 application/zstd Cct ober 2018

Finally, the decoder can tell how nany bytes were used in this
process and how many synbols are present. The bitstream consunes a
round nunber of bytes. Any remaining bit within the last byte is
si mply unused.

The distribution of nornalized probabilities is enough to create a
uni que decoding table. The table has a size of (1 << Accuracy_Log).
Each cell describes the synbol decoded and instructions to get the
next state.

Synbol s are scanned in their natural order for "less than 1"
probabilities as described above. Synbols with this probability are
being attributed a single cell, starting fromthe end of the table
and retreating. These synbols define a full state reset, reading
Accuracy_Log bits.

Al'l remaining synbols are allocated in their natural order. Starting
fromsynbol 0 and table position 0, each synbol gets allocated as
nmany cells as its probability. Cell allocation is spread, not

i near; each successor position follows this rule:

position += (tableSize >> 1) + (tableSize >> 3) + 3;
position &= tableSize - 1

A position is skipped if it is already occupied by a "less than 1"
probability synbol. Position does not reset between synbols; it
sinmply iterates through each position in the table, switching to the
next synbol when enough states have been allocated to the current
one.

The result is a list of state values. Each state will decode the
current synbol

To get the Nunber_of Bits and Baseline required for the next state,

it is first necessary to sort all states in their natural order. The
| ower states will need 1 nore bit than higher ones. The process is
repeated for each synbol

For exanple, presum ng a synbol has a probability of 5, it receives
five state values. States are sorted in natural order. The next
power of 2 is 8. The space of probabilities is divided into 8 equa
parts. Presuning the Accuracy Log is 7, this defines 128 states, and
each share (divided by 8) is 16 in size. |In order to reach 8, 8 - 5
= 3 lowest states will count "double", doubling the nunber of shares
(32 in width), requiring 1 nore bit in the process.

Col l et & Kucherawy I nf or mati onal [Page 33]

RFC 8478 application/zstd Cct ober 2018

Baseline is assigned starting fromthe hi gher states using fewer
bits, and proceeding naturally, then resuming at the first state,
each taking its allocated width from Basel i ne.

o m e e o Fomm - Fomm - Fomm e S R, Fomm - +
| state order | 0 | 1 | 2 | 3 | 4
o Fomm o - Fomm o - Fomm e e Fomm o Fomm o - +
| wi dt h | 32 | 32 | 32 | 16 | 16
oo R R - S R R +
| Number _of Bits | 5 | 5 | 5 | 4 | 4

o m e e o Fomm - Fomm - Fomm e S R, Fomm - +
| range nunber | 2 | 4 | 6 | O | 1
o Fomm o - Fomm o - Fomm e e Fomm o Fomm o - +
| Basel i ne | 32 | 64 | 96 | O | 16
oo R R - S R R +
| range | 32-63 | 64-95 | 96-127 | 0-15 | 16-31

o m e e o Fomm - Fomm - Fomm e S R, Fomm - +

The next state is determned fromthe current state by reading the
requi red Number of Bits and adding the specified Baseline.

See Appendix A for the results of this process that are applied to
the default distributions.

4.2. Huf fman Codi ng

Zst andard Huf f man-coded streans are read backwards, simlar to the
FSE bitstreans. Therefore, to find the start of the bitstream it is
necessary to know the offset of the |ast byte of the Huffnan-coded
stream

After witing the last bit containing information, the conpressor
wites a single 1 bit and then fills the byte with 0-7 0 bits of
paddi ng. The last byte of the conpressed bitstream cannot be 0 for
that reason.

When deconpressing, the last byte containing the padding is the first
byte to read. The deconpressor needs to skip 0-7 initial 0 bits and
the first 1 bit that occurs. Afterwards, the useful part of the

bi t st ream begi ns.

The bitstream contains Huf fman-coded synbols in little-endian order
with the codes defined by the nmethod bel ow.

Col l et & Kucherawy I nf or mati onal [Page 34]

RFC 8478 application/zstd Cct ober 2018

4.2.1. Huffman Tree Description

Prefix coding represents synbols froman a priori known al phabet by
bit sequences (codewords), one codeword for each symbol, in a nmanner
such that different synbols may be represented by bit sequences of
different | engths, but a parser can always parse an encoded string
unanbi guousl y synbol by synbol.

G ven an al phabet with known symbol frequencies, the Huffman
algorithmall ows the construction of an optimal prefix code using the
fewest bits of any possible prefix codes for that al phabet.

The prefix code nmust not exceed a maxi num code length. Mre bits
i mprove accuracy but yield a | arger header size and require nore
menory or nore conpl ex decodi ng operations. This specification
[imts the maxi num code length to 11 bits.

Al literal values fromzero (included) to the |ast present one
(excluded) are represented by Weight with values fromO to
Max_Nunber _of _Bits. Transformation from Weight to Number_of _Bits
follows this pseudocode:

if Weight ==
Nunber _of Bits = 0
el se
Nunmber _of _Bits = Max_Number_of _Bits + 1 - Wi ght

The | ast synbol’s Weight is deduced from previously decoded ones, by
conpleting to the nearest power of 2. This power of 2 gives
Max_Nunber _of Bits the depth of the current tree

For exanple, presune the follow ng Huf fman tree nust be descri bed:

S T +
| Literal Value | Number_of Bits |
R oo o - +
| 0 | 1 |
B - +
| 1 | 2 |
S T +
| 2 | 3 |
R oo o - +
| 3 | 0 |
B - +
| 4 | 4 |
S T +
| 5 | 4 |
R oo o - +

Col l et & Kucherawy I nf or mati onal [Page 35]

RFC 8478 application/zstd Cct ober 2018

The tree depth is 4, since its longest elenent uses 4 bits. (The

| ongest elenments are those with the smallest frequencies.) Value 5
will not be listed as it can be deternined fromthe values for 0-4,
nor will values above 5 as they are all 0. Values fromO to 4 wll
be listed using Wight instead of Nunber_of Bits. The pseudocode to
det erm ne Weight is:

i f Nunber of Bits ==
Wi ght 0
el se
Wei ght = Max_Nunber _of Bits + 1 - Nunmber_of Bits

It gives the follow ng series of weights:

. I +
| Literal Value | Weight |
Fom e e e oo - Fomm e +
I 0 | 4 I
S TR S S +
I 1 | 3 I
. Fommmaa - +
I 2 | 2 I
Fom e e e oo - Fomm e +
I 3 |0 I
S TR S S +
I 4 |1 I
. Fommmaa - +

The decoder will do the inverse operation: having collected weights
of literals fromO to 4, it knows the last literal, 5, is present
with a non-zero Wight. The Wight of 5 can be deternined by
advancing to the next power of 2. The sum of 2"(Wight-1) (excluding
0's) is 15. The nearest power of 2 is 16. Therefore,
Max_Number _of _Bits = 4 and Weight[5] = 16 - 15 =1

4.2.1.1. Huffman Tree Header

This is a single byte value (0-255), which describes how the series
of weights is encoded.

headerByte < 128: The series of weights is conpressed using FSE (see

below). The length of the FSE-conpressed series is equal to
header Byte (0-127).

Col l et & Kucherawy I nf or mati onal [Page 36]

RFC 8478 application/zstd Cct ober 2018

headerByte >= 128: This is a direct representati on, where each
Weight is witten directly as a 4-bit field (0-15). They are
encoded forward, 2 weights to a byte with the first weight taking
the top 4 bits and the second taking the bottom 4; for exanple,
the follow ng operations could be used to read the wei ghts:

Weight[0] = (Byte[0] >> 4)
Weight[1] = (Byte[0] & Oxf),
etc.

The full representation occupies ceiling(Nunber_of_Synbol s/ 2)
bytes, neaning it uses only full bytes even if Nunber_ of Synbols
is odd. Nunmber_ of Synbols = headerByte - 127. Note that nmaxi num
Nunmber _of _Synbols is 255 - 127 = 128. If any literal has a val ue
over 128, raw header npde is not possible, and it is necessary to
use FSE conpressi on.

4.2.1.2. FSE Conpression of Huffman Wi ghts

In this case, the series of Huffnman weights is conpressed using FSE
conpression. It is a single bitstreamwith two interleaved states,
sharing a single distribution table.

To decode an FSE bitstream it is necessary to know its conpressed
size. Conpressed size is provided by headerByte. 1t’'s also
necessary to know its maxi num possi bl e deconpressed size, which is
255, since literal values span fromO to 255, and the last synbol’s
Wei ght is not represented.

An FSE bitstream starts by a header, describing probabilities

distribution. It will create a decoding table. For a list of
Huf f man wei ghts, the nmaxi mum accuracy log is 6 bits. For nore
details, see Section 4.1.1.

The Huf f man header conpression uses two states, which share the sane
FSE distribution table. The first state (Statel) encodes the even-
nunbered i ndex synbols, and the second (State2) encodes the odd-
nunbered index synbols. Statel is initialized first, and then
State2, and they take turns decoding a single synmbol and updating
their state. For nore details on these FSE operations, see

Section 4. 1.

The nunber of synbols to be decoded is deternined by tracking the
bit Stream overflow condition: |If updating state after decoding a
synmbol would require nore bits than remain in the stream it is
assuned that extra bits are zero. Then, synbols for each of the
final states are decoded and the process is conplete.

Col l et & Kucherawy I nf or mati onal [Page 37]

RFC 8478

application/zstd Cct ober 2018

4.2.1.3. Conversion fromWights to Huf frman Prefix Codes

Al'l present symbols will now have a Wight value. It is possible to
transformweights into Nunber_of Bits, using this formul a:

if Weight > 0
Nunber of Bits
el se
Nunber _of Bits

Max_Nunber of Bits + 1 - Wi ght

0

Synbol s are sorted by Weight. Wthin the same Wi ght, synbols keep
natural sequential order. Synbols with a Wight of zero are renopved.
Then, starting fromthe | owest Wi ght, prefix codes are distributed

in sequential order.

For exanple, assume the following Iist of weights has been decoded:

R Fomm oo
| Literal | Weight
Fomm e Fomm e
| 0 | 4
S Fomm e m oo -
| 1 |3
R Fomm oo
| 2 |2
Fomm e Fomm e
| 3 | O
S Fomm e m oo -
| 4 |1
R Fomm oo
| 5 |1
Fomm e Fomm e

Col l et & Kucherawy

I nf or mati onal [Page 38]

RFC 8478 application/zstd Cct ober 2018

Sorting by weight and then the natural sequential order yields the
foll owi ng distribution:

S S Fommmm e S Fomm e e o +
| Literal | Weight | Number O _Bits | Prefix Codes

R Fomm oo S [-------mmmm - - +
| 3 | 0 | 0 | N A |
- S - [-------------- +
| 4 | 1 | 4 | 0000 |
S S Fommmm e S +
| 5 | 1 | 4 | 0001 |
R Fomm oo S [-------mmmm - - +
| 2 | 2 | 3 | 001 |
- S - [-------------- +
| 1 | 3 | 2 | 01 |
B R B R T | -------------- +
| 0 | 4 | 1 | 1 |
R Fomm oo S [-------mmmm - - +

4.2.2. Huf frman-Coded Streans

G ven a Huffnman decoding table, it is possible to decode a Huf fman-
coded stream

Each bitstream nust be read backward, which starts fromthe end and
goes up to the beginning. Therefore, it is necessary to know the
size of each bitstream

It is also necessary to know exactly which bit is the last. This is
detected by a final bit flag: the highest bit of the last byte is a
final-bit-flag. Consequently, a last byte of 0 is not possible. And
the final-bit-flag itself is not part of the useful bitstream

Hence, the | ast byte contains between 0 and 7 useful bits.

Starting fromthe end, it is possible to read the bitstreamin a
little-endian fashion, keeping track of already used bits. Since the
bitstreamis encoded in reverse order, starting fromthe end, read
synbols in forward order

Col l et & Kucherawy I nf or mati onal [Page 39]

RFC 8478 application/zstd Cct ober 2018

For exanple, if the literal sequence "0145" was encoded using the
above prefix code, it would be encoded (in reverse order) as:

B R S +
| Symbol | Encoding
S . +
| 5 | 0000
- e +
| 4 | 0001

B R S +
| 1 | 01 |
S . +
| 0 | 1 |
- e +
| Padding | 00001

B R S +

This results in the follow ng 2-byte bitstream
00010000 00001101

Here is an alternative representation with the synbol codes separated
by underscores:

0001_0000 00001 _1_01

Readi ng t he hi ghest Max_Nunber_of Bits bits, it's possible to conpare
the extracted value to the decoding table, determ ning the synbol to
decode and numnber of bits to discard.

The process continues reading up to the required nunber of synbols
per stream |If a bitstreamis not entirely and exactly consuned,
hence reaching exactly its beginning position with all bits consumned,
the decodi ng process is considered faulty.

5. Dictionary Format

Zstandard is compatible with "raw content” dictionaries, free of any
format restriction, except that they nust be at |east 8 bytes. These
dictionaries function as if they were just the content part of a
formatted dictionary.

However, dictionaries created by "zstd --train" in the reference
i mpl ementation follow a specific format, described here.

Dictionaries are not included in the conpressed content but rather

are provided out of band. That is, the Dictionary_ID identifies
whi ch shoul d be used, but this specification does not describe the

Col l et & Kucherawy I nf or mati onal [Page 40]

RFC 8478 application/zstd Cct ober 2018

nmechani sm by which the dictionary is obtained prior to use during
conpressi on or deconpression.

A dictionary has a size, defined either by a buffer limt or a file
size. The general format is:

Magi c_Nunber: 4 bytes ID, val ue OXEC30A437, little-endian format.

Dictionary ID:. 4 bytes, stored in little-endian fornat.
Dictionary I D can be any val ue, except 0 (which nmeans no
Dictionary_ID). It is used by decoders to check if they use the
correct dictionary. |If the frame is going to be distributed in a
private environnent, any Dictionary ID can be used. However, for
public distribution of conpressed franmes, the follow ng ranges are
reserved and shall not be used:

| ow range: <= 32767
hi gh range: >= (2731)

Entropy_Tables: Follow the same format as the tables in conpressed
bl ocks. See the relevant FSE and Huffrman sections for how to
decode these tables. They are stored in the follow ng order
Huf fman table for literals, FSE table for offsets, FSE table for
match |l engths, and FSE table for literals I engths. These tables
popul ate the Repeat Stats literals node and Repeat distribution
node for sequence decoding. It is finally followed by 3 offset
val ues, popul ating repeat offsets (instead of using {1,4,8}),
stored in order, 4-bytes little-endian each, for a total of 12
bytes. Each repeat offset nmust have a value less than the
di ctionary size

Content: The rest of the dictionary is its content. The content
acts as a "past" in front of data to be conpressed or
deconpressed, so it can be referenced in sequence conmands. As
l ong as the ampbunt of data decoded fromthis frane is |less than or
equal to Wndow Size, sequence conmands may specify offsets | onger
than the total length of decoded output so far to reference back
to the dictionary, even parts of the dictionary with offsets
| arger than Wndow Size. After the total output has surpassed
W ndow_Si ze, however, this is no longer allowed, and the
dictionary is no | onger accessible.

Col l et & Kucherawy I nf or mati onal [Page 41]

RFC 8478 application/zstd Cct ober

6. | ANA Consi derations
| ANA has made two registrations, as described bel ow
6.1. The ’application/zstd Media Type

The 'application/zstd nedia type identifies a block of data that

2018

is

conpressed using zstd conpression. The data is a stream of bytes as

described in this docunent. |ANA has added the following to the
"Medi a Types" registry:

Type nanme: application

Subt ype name: zstd

Required paraneters: NA

Optional paraneters: NA

Encodi ng consi derations: binary

Security considerations: See Section 7 of RFC 8478
Interoperability considerations: NA

Publ i shed specification: RFC 8478

Applications that use this nmedia type: anywhere data size is an
i ssue

Addi ti onal information:

Magi ¢ nunber(s): 4 bytes, little-endian fornat.
Val ue: OxFD2FB528

File extension(s): zst

Maci ntosh file type code(s): NA
For further information: See [ZSTD
I ntended usage: conmon
Restrictions on usage: NA
Author: Mirray S. Kucherawy

Change Controller: |ETF

Col l et & Kucherawy I nf or mati onal [Page 42]

RFC 8478 application/zstd Cct ober 2018

Provisional registration: no
6.2. Content Encoding

| ANA has added the following entry to the "HITP Content Codi ng
Regi stry" within the "Hypertext Transfer Protocol (HTTP) Paraneters”
registry:

Name: zstd

Description: A stream of bytes conpressed using the Zstandard
pr ot oco

Pointer to specification text: RFC 8478
6.3. Dictionaries

Work in progress includes devel opnent of dictionaries that wll
optim ze conpression and deconpression of particular types of data.
Speci fication of such dictionaries for public use will necessitate
regi stration of a code point fromthe reserved range described in
Section 3.1.1.1.3 and its association with a specific dictionary.

However, there are at present no such dictionaries published for
public use, so this docunment makes no i nmedi ate request of IANA to
create such a registry.

7. Security Considerations

Any data conpression nethod involves the reduction of redundancy in
the data. Zstandard is no exception, and the usual precautions

apply.

One shoul d never conpress a nessage whose content mnust remain secret
with a nmessage generated by a third party. Such a conpression can be
used to guess the content of the secret nessage through anal ysis of
entropy reduction. This was denonstrated in the Conpression Ratio

I nfo-1eak Made Easy (CRIME) attack [CRI Mg, for exanple.

A decoder has to denobnstrate capabilities to detect and prevent any
kind of data tanpering in the conpressed frane fromtriggering system
faults, such as reading or witing beyond all owed nenory ranges.

This can be guaranteed by either the inplenentation | anguage or
careful bound checkings. O particular note is the encoding of
Nunber _of Sequences val ues that cause the decoder to read into the

bl ock header (and beyond), as well as the indication of a
Frame_Content _Size that is smaller than the actual deconpressed data
in an attenpt to trigger a buffer overflow It is highly recomended

Col l et & Kucherawy I nf or mati onal [Page 43]

RFC 8478 application/zstd Cct ober 2018

to fuzz-test (i.e., provide invalid, unexpected, or random i nput and
verify safe operation of) decoder inplenmentations to test and harden
their capability to detect bad franes and deal with them w thout any
adverse system side effect.

An attacker may provide correctly forned conpressed franes with
unreasonabl e nenory requirenents. A decoder nust always contro
menory requirements and enforce sonme (systemspecific) linmts in
order to protect nenory usage from such scenari os.

Conpressi on can be optimzed by training a dictionary on a variety of
rel ated content payl oads. This dictionary nust then be avail abl e at
the decoder for deconpression of the payload to be possible. Wile
this docunment does not specify how to acquire a dictionary for a

gi ven conpressed payload, it is worth noting that third-party

di ctionaries may interact unexpectedly with a decoder, |eading to
possi bl e menmory or other resource exhaustion attacks. W expect such
topics to be discussed in further detail in the Security

Consi derations section of a forthcom ng RFC for dictionary

acqui sition and transm ssion, but highlight this issue now out of an
abundance of caution.

As discussed in Section 3.1.2, it is possible to store arbitrary user
netadata in skippable frames. Wile such frames are ignored during
deconpressi on of the data, they can be used as a waternark to track
the path of the conpressed payl oad.

8. Implenentation Status

Source code for a C | anguage inplenentation of a Zstandard-conpliant
library is available at [ZSTD-A@ THUB]. This inplenentation is

consi dered to be the reference inplementation and is production
ready; it inplenents the full range of the specification. It is
routinely tested against security hazards and wi dely depl oyed within
Facebook infrastructure.

The reference version is optimzed for speed and is highly portable.
It has been proven to run safely on multiple architectures (e.g.
x86, x64, ARM MPS, PowerPC, |A64) featuring 32- or 64-bit
addressing schenes, a little- or big-endian storage schene, a nunber
of different operating systens (e.g., UN X (including Linux, BSD
0S- X, and Sol aris) and W ndows), and a nunber of conpilers (e.g.
gcc, clang, visual, and icc).

Col l et & Kucherawy I nf or mati onal [Page 44]

RFC 8478 application/zstd Cct ober 2018

9. References

9.1. Nornmtive References

[ZSTD| "Zstandard", <http://ww.zstd. net>.
9.2. Informative References
[ANS] Duda, J., "Asymmetric nuneral systens: entropy codi ng

conbi ni ng speed of Huffman coding with conpression rate of
arithmetic codi ng", January 2014,
<https://arxiv.org/pdf/1311. 2540>.

[CRI ME] "CRI ME", June 2018, <https://en.w ki pedi a.org/w
i ndex. php?titl e=CRl ME&o| di d=844538656>.

[FSE] "FiniteStateEntropy", commt 6efa78a, June 2018,
<https://github. coml Cyand4973/ Fi ni t eSt at eEnt r opy/ >.

[Lz4] "LZ4 Frame Format Description', commt d03224b, January
2018, <https://github.com | z4/|z4/ bl ob/ mast er/ doc/
| z4_Franme_formt. nd>.

[RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
RFC 1952, DA 10.17487/ RFC1952, May 1996,
<https://ww.rfc-editor.org/info/rfcl952>,

[XXHASH] "XXHASH Al gorithm', <http://wwm. xxhash. org>.

[ZSTD- d THUB]

"zstd", commt 8514bd8, August 2018,
<https://github. com facebook/ zst d>.

Col l et & Kucherawy I nf or mati onal [Page 45]

RFC 8478 application/zstd Cct ober 2018

Appendi x A. Decodi ng Tabl es for Predefined Codes

Thi s appendi x contai ns FSE decoding tables for the predefined litera
| ength, match length, and offset codes. The tables have been
constructed using the algorithmas given above in Section 4.1.1. The
tabl es here can be used as exanples to crosscheck that an

i npl enentation has built its decoding tables correctly.

A 1. Literal Length Code Table

Fomm - Fomm e o m e e o S R, +
| State | Synmbol | Nunber O _Bits | Base
Fomm o - Fomm e e o Fomm o +
| 0 | o | 0 | 0 |
R - oo S R +
| 0 | o | 4 | 0 |
Fomm - Fomm e o m e e o S R, +
| 1 o | 4 | 16 |
Fomm o - Fomm e e o Fomm o +
| 2 | 1 5 | 32 |
R - oo S R +
| 3 | 3 | 5 | 0 |
Fomm - Fomm e o m e e o S R, +
| 4 | 4 | 5 | 0 |
Fomm o - Fomm e e o Fomm o +
| 5 | 6 | 5 | 0 |
R - oo S R +
| 6 | 7 5 | 0 |
Fomm - Fomm e o m e e o S R, +
| 7 O | 5 | 0 |
Fomm o - Fomm e e o Fomm o +
| 8 | 10 | 5 | 0 |
R - oo S R +
| °O | 12 | 5 | 0 |
Fomm - Fomm e o m e e o S R, +
| 10 | 14 | 6 | 0
Fomm o - Fomm e e o Fomm o +
| 11 | 16 | 5 | 0

R - oo S R +
| 12 | 18 | 5 | 0
Fomm - Fomm e o m e e o S R, +
| 13 | 19 | 5 | 0
Fomm o - Fomm e e o Fomm o +
| 14 | 21 | 5 | 0

R - oo S R +
| 15 | 22 | 5 | 0
Fomm - Fomm e o m e e o S R, +
| 16 | 24 | 5 | 0

Col l et & Kucherawy I nf or mati onal [Page 46]

2018

Cct ober

application/zstd

RFC 8478

g

32 |

5

25

17 |
g S

0

5

26

18

I
+

0

I
+

6

27

19 |
oo

0

6

29

20 |
g S

0

6

31

21

I
+
I

32

I
+

4

0

22 |
oo

0

4

1

23 |
g S

0

24 |

I
+
I

32

I
+

5

4

25 |
oo

0

5

5

26 |
g S

32 |

5

7

27

0 |
+

I
+

5

8

28 |
oo

—+
'
'
N
™
'
'
—+
'
'
'
'
'
'
'
o
'
'
'
'
'
'
'
'
—+
'
'
'
o
-
'
'
'
—+
'
'
o
N
'
'
'
—+

0

5

11

30

I
+

0

I
+

6

13

31 |
oo

32

5

| 16

32 |
g S

0

17

33 |
e

I
+
I

32

I
+

5

19

34 |
e

0

5

| 20

35 |
g S

32 |

5

| 22

36

I
+

0

I
+

5

23

37 |
oo

0

4

| 25

38 |
g S

16 |

4

| 25

39

32

26

40

[Page 47]

| nf or mat i ona

Col l et & Kucherawy

2018

Cct ober

application/zstd

RFC 8478

g

0

6

| 28

41 |
g S

0

6

| 30

42

48 |
S
I

I
+

4

0

43 |
e

4 16

1

44 |
g S

32 |

5

2

45

I
+
I

32

I
+

5

3

46 |
e

32

5

5

47 |
g S

32 |

6

48 |

I
+
I

32

I
+

5

8

49 |
e

32

5

9

50 |
g S

32 |

5

11

51

I
+
I

32

I
+

5

12

52 |
oo

0

6

15

53 |
g S

32 |

5

17

54

I
+
I

32

I
+

5

18

55 |
oo

32

5

20

56 |
g S

32 |

| 21

57 |
e

I
+
I

32

I
+

5

23

58 |
oo

32

5

24

59 |
g S

0

6

35

60

I
+

0

I
+

6

34

61 |
oo

0

6

| 33

62 |
g S

0

6

| 32

63

[Page 48]

| nf or mat i ona

Col l et & Kucherawy

2018

Cct ober

application/zstd

RFC 8478

Mat ch Length Code Tabl e

A 2.

g

Base |

Nunmber OF Bits

Synbo

State | |
T L T

|
+

0

|
+

0

0

0 |
e

0

6

0

0 |
g S

0

4

1

1

|
+
I

32

|
+

5

2

2 |
e

0

5

3

3 |
g S

0

4 |

|
+

0

|
+

5

6

5 |
e

0

5

8

6 |
g S

0

6

10

7

|
+

0

|
+

6

13

8 |
e

0

6

16

9 |
g S

0

6

19

10

|
+

0

|
+

6

22

11 |
oo

0

6

25

12 |
g S

0

28

13 |
e

|
+

0

|
+

31 6

14 |
e

0

6

33

15 |
g S

0

6

35

16

|
+

0

|
+

6

37

17 |
oo

0

6

| 39

18 |
g S

0

6

| 41

19

43

20

[Page 49]

| nf or mat i ona

Col l et & Kucherawy

2018

Cct ober

application/zstd

RFC 8478

g

0

6

| 45

21 |
g S

16 |

4

1

22

|
+

0

|
+

4

2

23 |
oo

32

5

3

24 |
g S

0

5

4

25

|
+
I

32

|
+

5

6

26 |
oo

0

5

7

27 |
g S

0

28 |
e

|
+

0

|
+

6

12

29 |
oo

0

6

15

30 |
g S

0

6

18

31

|
+

0

|
+

21 6

32 |
oo

0

6

24

33 |
g S

0

6

27

34

|
+

0

|
+

6

30

35 |
oo

0

6

| 32

36 |
g S

0

34

37 |
e

|
+

0

|
+

6

36

38 |
oo

0

6

| 38

39 |
g S

0

6

| 40

40

|
+

0

|
+

6

42

41 |
e

0

6

| 44

42 |
g S

32 |

4

1

43

48

44

[Page 50]

| nf or mat i ona

Col l et & Kucherawy

2018

Cct ober

application/zstd

RFC 8478

g

16 |

4

2

45 |
g S

32 |

5

4

46

|
+
I

32

|
+

5

5

47 |
e

32

5

7

48 |
g S

32 |

5

8

49

|
+

0

|
+

6

11

50 |
oo

0

6

| 14

51 |
g S

0

17

52 |
e

|
+

0

|
+

6

20

53 |
oo

0

6

23

54 |
g S

0

6

| 26

55

|
+

0

|
+

6

29

56 |
oo

0

6

| 52

57 |
g S

0

6

| 51

58

|
+

0

|
+

6

50

59 |
oo

0

6

| 49

60 |
g S

0

| |

48

61

|
+

0

|
+

6

47

62 |
oo

0

6

| 46

63 |
g S

[Page 51]

| nf or mat i ona

Col l et & Kucherawy

2018

Cct ober

application/zstd

RFC 8478

O fset Code Tabl e

A 3.

g

Base |

Nunmber OF Bits

Synbo

State | |
T L T

|
+

0

|
+

0

0

0 |
e

0

5

0

0 |
g S

0

4

6

1

|
+

0

|
+

5

9

2 |
e

0

5

15

3 |
g S

0

| 21

4 |

|
+

0

|
+

5

3

5 |
e

0

4

7

6 |
g S

0

5

12

7

|
+

0

|
+

5

18

8 |
e

0

5

23

9 |
g S

0

5

5

10

|
+

0

|
+

4

8

11 |
oo

0

5

14

12 |
g S

0

20

13 |
e

0 |
+

|
+

5

2

14 |
e

—+
1
1
O .
-
1
1
—+
1
1
1
1
1
1
1
< 0
1
1
1
1
1
1
1
1
—+
1
1
1
N~ o
1
1
1
1
—+
1
1
i .
-
1
1
1
—+

0

5

11

16

|
+

0

|
+

5

17

17 |
oo

0

5

22

18 |
g S

0

5

4

19

16

20

[Page 52]

| nf or mat i ona

Col l et & Kucherawy

RFC 8478 application/zstd Cct ober 2018

fome oo - oo O +
| 21 | 13 | 5 | 0

S - o e R +
| 22 | 19 | 5 | 0 |
R K oo Fomem o +
| 23 | 1 | 5 | 0 |
Fommm o - oo O +
| 24 | 6 | 4 | 16

S - o e R +
| 25 | 10 | 5 | 0 |
R K oo Fomem o +
| 26 | 16 | 5 | 0 |
Fommm o - oo O +
| 27 | 28 | 5 | 0 |
S - o e R +
| 28 | 27 | 5 | 0 |
R K oo Fomem o +
| 29 | 26 | 5 | 0 |
Fommm o - oo O +
| 30 | 25 | 5 | 0

S - o e R +
| 31 | 24 | 5 | 0

R K oo Fomem o +

Acknowl edgnent s
zstd was devel oped by Yann Col |l et.
Bobo Bose- Kol anu, Felix Handte, Kyle Nekritz, Nick Terrell, and David

Schl ei mer provided hel pful feedback during the devel opnent of this
document .

Col l et & Kucherawy I nf or mati onal [Page 53]

RFC 8478 application/zstd Cct ober 2018

Aut hors’ Addr esses

Yann Col | et

Facebook

1 Hacker Way

Menl o Park, CA 94025
United States of Anerica

Email: cyan@b. com

Murray S. Kucherawy (editor)
Facebook

1 Hacker Wy

Menl o Park, CA 94025
United States of America

Email: nsk@b. com

Col l et & Kucherawy I nf or mati onal [Page 54]

