
ï»¿

Internet Engineering Task Force (IETF) T. Pauly, Ed.
Request for Comments: 8908 Apple Inc.
Category: Standards Track D. Thakore, Ed.
ISSN: 2070-1721 CableLabs
 September 2020

 Captive Portal API

Abstract

 This document describes an HTTP API that allows clients to interact
 with a Captive Portal system. With this API, clients can discover
 how to get out of captivity and fetch state about their Captive
 Portal sessions.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8908.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Workflow
 4. API Connection Details
 4.1. Server Authentication
 5. API State Structure
 6. Example Interaction
 7. Security Considerations
 7.1. Privacy Considerations
 8. IANA Considerations
 8.1. Captive Portal API JSON Media Type Registration
 8.2. Captive Portal API Keys Registry
 9. References
 9.1. Normative References
 9.2. Informative References
 Acknowledgments
 Authors’ Addresses

1. Introduction

 This document describes a HyperText Transfer Protocol (HTTP)
 Application Programming Interface (API) that allows clients to
 interact with a Captive Portal system. The API defined in this
 document has been designed to meet the requirements in the Captive
 Portal Architecture [CAPPORT-ARCH]. Specifically, the API provides:

 * The state of captivity (whether or not the client has access to
 the Internet).

 * A URI of a user-facing web portal that can be used to get out of
 captivity.

 * Authenticated and encrypted connections, using TLS for connections
 to both the API and user-facing web portal.

2. Terminology

 This document leverages the terminology and components described in
 [CAPPORT-ARCH] and additionally defines the following terms:

 Captive Portal Client
 The client that interacts with the Captive Portal API is typically
 some application running on the user equipment that is connected
 to the captive network. This is also referred to as the "client"
 in this document.

 Captive Portal API Server
 The server exposing the APIs defined in this document to the
 client. This is also referred to as the "API server" in this
 document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Workflow

 The Captive Portal Architecture defines several categories of
 interaction between clients and Captive Portal systems:

 1. Provisioning, in which a client discovers that a network has a
 captive portal and learns the URI of the API server.

 2. API Server interaction, in which a client queries the state of
 captivity and retrieves the necessary information to get out of
 captivity

 3. Enforcement, in which the enforcement device in the network
 blocks disallowed traffic.

 This document defines the mechanisms used in the second category. It
 is assumed that the location of the Captive Portal API server has
 been discovered by the client as part of provisioning. A set of
 mechanisms for discovering the API server endpoint is defined in
 [RFC8910].

4. API Connection Details

 The API server endpoint MUST be accessed over HTTP using an https URI
 [RFC2818] and SHOULD use the default https port. For example, if the
 Captive Portal API server is hosted at "example.org", the URI of the
 API could be "https://example.org/captive-portal/api".

 The client SHOULD NOT assume that the URI of the API server for a
 given network will stay the same and SHOULD rely on the discovery or
 provisioning process each time it joins the network.

 As described in Section 3 of [CAPPORT-ARCH], the identity of the
 client needs to be visible to the Captive Portal API server in order

 for the server to correctly reply with the client’s portal state. If
 the identifier used by the Captive Portal system is the client’s set
 of IP addresses, the system needs to ensure that the same IP
 addresses are visible to both the API server and the enforcement
 device.

 If the API server needs information about the client identity that is
 not otherwise visible to it, the URI provided to the client during
 provisioning SHOULD be distinct per client. Thus, depending on how
 the Captive Portal system is configured, the URI will be unique for
 each client host and between sessions for the same client host.

 For example, a Captive Portal system that uses per-client session
 URIs could use "https://example.org/captive-portal/api/X54PD39JV" as
 its API URI.

4.1. Server Authentication

 The purpose of accessing the Captive Portal API over an HTTPS
 connection is twofold: first, the encrypted connection protects the
 integrity and confidentiality of the API exchange from other parties
 on the local network; second, it provides the client of the API an
 opportunity to authenticate the server that is hosting the API. This
 authentication allows the client to ensure that the entity providing
 the Captive Portal API has a valid certificate for the hostname
 provisioned by the network using the mechanisms defined in [RFC8910],
 by validating that a DNS-ID [RFC6125] on the certificate is equal to
 the provisioned hostname.

 Clients performing revocation checking will need some means of
 accessing revocation information for certificates presented by the
 API server. Online Certificate Status Protocol [RFC6960] (OCSP)
 stapling, using the TLS Certificate Status Request extension
 [RFC6066], SHOULD be used. OCSP stapling allows a client to perform
 revocation checks without initiating new connections. To allow for
 other forms of revocation checking, especially for clients that do
 not support OCSP stapling, a captive network SHOULD permit
 connections to OCSP responders or Certificate Revocation Lists (CRLs)
 that are referenced by certificates provided by the API server. For
 more discussion on certificate revocation checks, see Section 6.5 of
 BCP 195 [RFC7525]. In addition to connections to OCSP responders and
 CRLs, a captive network SHOULD also permit connections to Network
 Time Protocol (NTP) [RFC5905] servers or other time-sync mechanisms
 to allow clients to accurately validate certificates.

 Certificates with missing intermediate certificates that rely on
 clients validating the certificate chain using the URI specified in
 the Authority Information Access (AIA) extension [RFC5280] SHOULD NOT
 be used by the Captive Portal API server. If the certificates do
 require the use of AIA, the captive network MUST allow client access
 to the host specified in the URI.

 If the client is unable to validate the certificate presented by the
 API server, it MUST NOT proceed with any of the behavior for API
 interaction described in this document. The client will proceed to
 interact with the captive network as if the API capabilities were not
 present. It may still be possible for the user to access the network
 if the network redirects a cleartext webpage to a web portal.

5. API State Structure

 The Captive Portal API data structures are specified in JavaScript
 Object Notation (JSON) [RFC8259]. Requests and responses for the
 Captive Portal API use the "application/captive+json" media type.
 Clients SHOULD include this media type as an Accept header in their
 GET requests, and servers MUST mark this media type as their Content-
 Type header in responses.

 The following key MUST be included in the top level of the JSON
 structure returned by the API server:

 +=========+=========+==+
 | Key | Type | Description |
 +=========+=========+==+
 | captive | boolean | Indicates whether the client is in a state |
 | | | of captivity, i.e, it has not satisfied |
 | | | the conditions to access the external |
 | | | network. If the client is captive (i.e., |
 | | | captive=true), it will still be allowed |
 | | | enough access for it to perform server |
 | | | authentication (Section 4.1). |
 +---------+---------+--+

 Table 1

 The following keys can be optionally included in the top level of the
 JSON structure returned by the API server:

 +====================+=========+==================================+
 | Key | Type | Description |
 +====================+=========+==================================+
 | user-portal-url | string | Provides the URL of a web portal |
 | | | that MUST be accessed over TLS |
 | | | with which a user can interact. |
 +--------------------+---------+----------------------------------+
 | venue-info-url | string | Provides the URL of a webpage or |
 | | | site that SHOULD be accessed |
 | | | over TLS on which the operator |
 | | | of the network has information |
 | | | that it wishes to share with the |
 | | | user (e.g., store info, maps, |
 | | | flight status, or |
 | | | entertainment). |
 +--------------------+---------+----------------------------------+
 | can-extend-session | boolean | Indicates that the URL specified |
 | | | as "user-portal-url" allows the |
 | | | user to extend a session once |
 | | | the client is no longer in a |
 | | | state of captivity. This |
 | | | provides a hint that a client |
 | | | system can suggest accessing the |
 | | | portal URL to the user when the |
 | | | session is near its limit in |
 | | | terms of time or bytes. |
 +--------------------+---------+----------------------------------+
 | seconds-remaining | number | An integer that indicates the |
 | | | number of seconds remaining, |
 | | | after which the client will be |
 | | | placed into a captive state. |
 | | | The API server SHOULD include |
 | | | this value if the client is not |
 | | | captive (i.e., captive=false) |
 | | | and the client session is time- |
 | | | limited and SHOULD omit this |
 | | | value for captive clients (i.e., |
 | | | captive=true) or when the |
 | | | session is not time-limited. |
 +--------------------+---------+----------------------------------+
 | bytes-remaining | number | An integer that indicates the |
 | | | number of bytes remaining, after |
 | | | which the client will be placed |
 | | | into a captive state. The byte |
 | | | count represents the sum of the |
 | | | total number of IP packet (layer |
 | | | 3) bytes sent and received by |
 | | | the client, including IP |
 | | | headers. Captive Portal systems |
 | | | might not count traffic to |
 | | | whitelisted servers, such as the |
 | | | API server, but clients cannot |
 | | | rely on such behavior. The API |
 | | | server SHOULD include this value |

 | | | if the client is not captive |
 | | | (i.e., captive=false) and the |
 | | | client session is byte-limited |
 | | | and SHOULD omit this value for |
 | | | captive clients (i.e., |
 | | | captive=true) or when the |
 | | | session is not byte-limited. |
 +--------------------+---------+----------------------------------+

 Table 2

 The valid JSON keys can be extended by adding entries to the Captive
 Portal API Keys Registry (Section 8.2). If a client receives a key
 that it does not recognize, it MUST ignore the key and any associated
 values. All keys other than the ones defined in this document as
 "required" will be considered optional.

 Captive Portal JSON content can contain per-client data that is not
 appropriate to store in an intermediary cache. Captive Portal API
 servers SHOULD set the Cache-Control header field in any responses to
 "private" or a more restrictive value, such as "no-store" [RFC7234].

 Client behavior for issuing requests for updated JSON content is
 implementation specific and can be based on user interaction or the
 indications of seconds and bytes remaining in a given session. If at
 any point the client does not receive valid JSON content from the API
 server, either due to an error or due to receiving no response, the
 client SHOULD continue to apply the most recent valid content it had
 received or, if no content had been received previously, proceed to
 interact with the captive network as if the API capabilities were not
 present.

6. Example Interaction

 Upon discovering the URI of the API server, a client connected to a
 captive network will query the API server to retrieve information
 about its captive state and conditions to escape captivity. In this
 example, the client discovered the URI "https://example.org/captive-
 portal/api/X54PD39JV" using one of the mechanisms defined in
 [RFC8910].

 To request the Captive Portal JSON content, a client sends an HTTP
 GET request:

 GET /captive-portal/api/X54PD39JV HTTP/1.1
 Host: example.org
 Accept: application/captive+json

 The server then responds with the JSON content for that client:

 HTTP/1.1 200 OK
 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:07:35 GMT
 Content-Type: application/captive+json

 {
 "captive": true,
 "user-portal-url": "https://example.org/portal.html"
 }

 Upon receiving this information, the client will use it to direct the
 user to the web portal (as specified by the user-portal-url value) to
 enable access to the external network. Once the user satisfies the
 requirements for external network access, the client SHOULD query the
 API server again to verify that it is no longer captive.

 When the client requests the Captive Portal JSON content after
 gaining external network access, the server responds with updated
 JSON content:

 HTTP/1.1 200 OK

 Cache-Control: private
 Date: Mon, 02 Mar 2020 05:08:13 GMT
 Content-Type: application/captive+json

 {
 "captive": false,
 "user-portal-url": "https://example.org/portal.html",
 "venue-info-url": "https://flight.example.com/entertainment",
 "seconds-remaining": 326,
 "can-extend-session": true
 }

7. Security Considerations

 One of the goals of this protocol is to improve the security of the
 communication between client hosts and Captive Portal systems.
 Client traffic is protected from passive listeners on the local
 network by requiring TLS-encrypted connections between the client and
 the Captive Portal API server, as described in Section 4. All
 communication between the clients and the API server MUST be
 encrypted.

 In addition to encrypting communications between clients and Captive
 Portal systems, this protocol requires a basic level of
 authentication from the API server, as described in Section 4.1.
 Specifically, the API server MUST present a valid certificate on
 which the client can perform revocation checks. This allows the
 client to ensure that the API server has authority for the hostname
 that was provisioned by the network using [RFC8910]. Note that this
 validation only confirms that the API server matches what the
 network’s provisioning mechanism (such as DHCP or IPv6 Router
 Advertisements) provided; it is not validating the security of those
 provisioning mechanisms or the user’s trust relationship to the
 network.

7.1. Privacy Considerations

 Information passed between a client and the user-facing web portal
 may include a user’s personal information, such as a full name and
 credit card details. Therefore, it is important that both the user-
 facing web portal and the API server that points a client to the web
 portal are only accessed over encrypted connections.

 It is important to note that although communication to the user-
 facing web portal requires use of TLS, the authentication only
 validates that the web portal server matches the name in the URI
 provided by the API server. Since this is not a name that a user
 typed in, the hostname of the website that would be presented to the
 user may include "confusable characters", which can mislead the user.
 See Section 12.5 of [RFC8264] for a discussion of confusable
 characters.

8. IANA Considerations

 IANA has registered the "application/captive+json" media type
 (Section 8.1) and created a registry for fields in that format
 (Section 8.2).

8.1. Captive Portal API JSON Media Type Registration

 This document registers the media type for Captive Portal API JSON
 text, "application/captive+json".

 Type name: application

 Subtype name: captive+json

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type.

 Security considerations: See Section 7

 Interoperability considerations: This document specifies format of
 conforming messages and the interpretation thereof.

 Published specification: RFC 8908

 Applications that use this media type: This media type is intended
 to be used by servers presenting the Captive Portal API, and
 clients connecting to such captive networks.

 Fragment identifier considerations: N/A

 Additional Information: N/A

 Person and email address to contact for further information:
 See Authors’ Addresses section

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: CAPPORT IETF WG

 Change controller: IETF

8.2. Captive Portal API Keys Registry

 IANA has created a new registry called "Captive Portal API Keys",
 which reserves JSON keys for use in Captive Portal API data
 structures. The initial contents of this registry are provided in
 Section 5.

 Each entry in the registry contains the following fields:

 Key: The JSON key being registered in string format.

 Type: The type of the JSON value to be stored, as one of the value
 types defined in [RFC8259].

 Description: A brief description explaining the meaning of the
 value, how it might be used, and/or how it should be interpreted
 by clients.

 Reference: A reference to a specification that defines the key and
 explains its usage.

 New assignments for the "Captive Portal API Keys" registry will be
 administered by IANA using the Specification Required policy
 [RFC8126]. The designated expert is expected to validate the
 existence of documentation describing new keys in a permanent,
 publicly available specification, such as an Internet-Draft or RFC.
 The expert is expected to validate that new keys have a clear meaning
 and do not create unnecessary confusion or overlap with existing
 keys. Keys that are specific to nongeneric use cases, particularly
 ones that are not specified as part of an IETF document, are
 encouraged to use a domain-specific prefix.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,

 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

9.2. Informative References

 [CAPPORT-ARCH]
 Larose, K., Dolson, D., and H. Liu, "CAPPORT
 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-capport-architecture-08, 11 May 2020,
 <https://tools.ietf.org/html/draft-ietf-capport-
 architecture-08>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8264] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 8264, DOI 10.17487/RFC8264, October 2017,
 <https://www.rfc-editor.org/info/rfc8264>.

 [RFC8910] Kumari, W. and E. Kline, "Captive-Portal Identification in
 DHCP and Router Advertisement (RA)", RFC 8910,
 DOI 10.17487/RFC8910, September 2020,
 <https://www.rfc-editor.org/info/rfc8910>.

Acknowledgments

 This work was started by Mark Donnelly and Margaret Cullen. Thanks
 to everyone in the CAPPORT Working Group who has given input.

Authors’ Addresses

 Tommy Pauly (editor)
 Apple Inc.
 One Apple Park Way
 Cupertino, CA 95014
 United States of America

 Email: tpauly@apple.com

 Darshak Thakore (editor)
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027
 United States of America

 Email: d.thakore@cablelabs.com

