
ï»¿

Internet Research Task Force (IRTF)                          A. Biryukov
Request for Comments: 9106                                       D. Dinu
Category: Informational                         University of Luxembourg
ISSN: 2070-1721                                          D. Khovratovich
                                                         ABDK Consulting
                                                            S. Josefsson
                                                                  SJD AB
                                                          September 2021

   Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work
                              Applications

Abstract
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1.  Introduction

   This document describes the Argon2 [ARGON2ESP] memory-hard function
   for password hashing and proof-of-work applications.  We provide an
   implementer-oriented description with test vectors.  The purpose is
   to simplify adoption of Argon2 for Internet protocols.  This document
   corresponds to version 1.3 of the Argon2 hash function.

   Argon2 is a memory-hard function [HARD].  It is a streamlined design.
   It aims at the highest memory-filling rate and effective use of
   multiple computing units, while still providing defense against
   trade-off attacks.  Argon2 is optimized for the x86 architecture and
   exploits the cache and memory organization of the recent Intel and
   AMD processors.  Argon2 has one primary variant, Argon2id, and two
   supplementary variants, Argon2d and Argon2i.  Argon2d uses data-
   dependent memory access, which makes it suitable for cryptocurrencies
   and proof-of-work applications with no threats from side-channel
   timing attacks.  Argon2i uses data-independent memory access, which
   is preferred for password hashing and password-based key derivation.
   Argon2id works as Argon2i for the first half of the first pass over
   the memory and as Argon2d for the rest, thus providing both side-
   channel attack protection and brute-force cost savings due to time-
   memory trade-offs.  Argon2i makes more passes over the memory to
   protect from trade-off attacks [AB15].

   Argon2id MUST be supported by any implementation of this document,
   whereas Argon2d and Argon2i MAY be supported.

   Argon2 is also a mode of operation over a fixed-input-length
   compression function G and a variable-input-length hash function H.
   Even though Argon2 can be potentially used with an arbitrary function
   H, as long as it provides outputs up to 64 bytes, the BLAKE2b
   function [BLAKE2] is used in this document.

   For further background and discussion, see the Argon2 paper [ARGON2].

   This document represents the consensus of the Crypto Forum Research
   Group (CFRG).

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Notation and Conventions

   x^y            integer x multiplied by itself integer y times

   a*b            multiplication of integer a and integer b

   c-d            subtraction of integer d from integer c

   E_f            variable E with subscript index f



   g / h          integer g divided by integer h.  The result is a
                  rational number.

   I(j)           function I evaluated at j

   K || L         string K concatenated with string L

   a XOR b        bitwise exclusive-or between bitstrings a and b

   a mod b        remainder of integer a modulo integer b, always in
                  range [0, b-1]

   a >>> n        rotation of 64-bit string a to the right by n bits

   trunc(a)       the 64-bit value, truncated to the 32 least
                  significant bits

   floor(a)       the largest integer not bigger than a

   ceil(a)        the smallest integer not smaller than a

   extract(a, i)  the i-th set of 32 bits from bitstring a, starting
                  from 0-th

   |A|            the number of elements in set A

   LE32(a)        32-bit integer a converted to a byte string in little
                  endian (for example, 123456 (decimal) is 40 E2 01 00)

   LE64(a)        64-bit integer a converted to a byte string in little
                  endian (for example, 123456 (decimal) is 40 E2 01 00
                  00 00 00 00)

   int32(s)       32-bit string s is converted to a non-negative integer
                  in little endian

   int64(s)       64-bit string s is converted to a non-negative integer
                  in little endian

   length(P)      the byte length of string P expressed as 32-bit
                  integer

   ZERO(P)        the P-byte zero string

3.  Argon2 Algorithm

3.1.  Argon2 Inputs and Outputs

   Argon2 has the following input parameters:

   *  Message string P, which is a password for password hashing
      applications.  It MUST have a length not greater than 2^(32)-1
      bytes.

   *  Nonce S, which is a salt for password hashing applications.  It
      MUST have a length not greater than 2^(32)-1 bytes.  16 bytes is
      RECOMMENDED for password hashing.  The salt SHOULD be unique for
      each password.

   *  Degree of parallelism p determines how many independent (but
      synchronizing) computational chains (lanes) can be run.  It MUST
      be an integer value from 1 to 2^(24)-1.

   *  Tag length T MUST be an integer number of bytes from 4 to 2^(32)-
      1.

   *  Memory size m MUST be an integer number of kibibytes from 8*p to
      2^(32)-1.  The actual number of blocks is m’, which is m rounded
      down to the nearest multiple of 4*p.

   *  Number of passes t (used to tune the running time independently of



      the memory size) MUST be an integer number from 1 to 2^(32)-1.

   *  Version number v MUST be one byte 0x13.

   *  Secret value K is OPTIONAL.  If used, it MUST have a length not
      greater than 2^(32)-1 bytes.

   *  Associated data X is OPTIONAL.  If used, it MUST have a length not
      greater than 2^(32)-1 bytes.

   *  Type y MUST be 0 for Argon2d, 1 for Argon2i, or 2 for Argon2id.

   The Argon2 output, or "tag", is a string T bytes long.

3.2.  Argon2 Operation

   Argon2 uses an internal compression function G with two 1024-byte
   inputs, a 1024-byte output, and an internal hash function H^x(), with
   x being its output length in bytes.  Here, H^x() applied to string A
   is the BLAKE2b ([BLAKE2], Section 3.3) function, which takes
   (d,ll,kk=0,nn=x) as parameters, where d is A padded to a multiple of
   128 bytes and ll is the length of d in bytes.  The compression
   function G is based on its internal permutation.  A variable-length
   hash function H’ built upon H is also used.  G is described in
   Section 3.5, and H’ is described in Section 3.3.

   The Argon2 operation is as follows.

   1.  Establish H_0 as the 64-byte value as shown below.  If K, X, or S
       has zero length, it is just absent, but its length field remains.

       H_0 = H^(64)(LE32(p) || LE32(T) || LE32(m) || LE32(t) ||
               LE32(v) || LE32(y) || LE32(length(P)) || P ||
               LE32(length(S)) || S ||  LE32(length(K)) || K ||
               LE32(length(X)) || X)

                            Figure 1: H_0 Generation

   2.  Allocate the memory as m’ 1024-byte blocks, where m’ is derived
       as:

       m’ = 4 * p * floor (m / 4p)

                          Figure 2: Memory Allocation

       For p lanes, the memory is organized in a matrix B[i][j] of
       blocks with p rows (lanes) and q = m’ / p columns.

   3.  Compute B[i][0] for all i ranging from (and including) 0 to (not
       including) p.

       B[i][0] = H’^(1024)(H_0 || LE32(0) || LE32(i))

                         Figure 3: Lane Starting Blocks

   4.  Compute B[i][1] for all i ranging from (and including) 0 to (not
       including) p.

       B[i][1] = H’^(1024)(H_0 || LE32(1) || LE32(i))

                          Figure 4: Second Lane Blocks

   5.  Compute B[i][j] for all i ranging from (and including) 0 to (not
       including) p and for all j ranging from (and including) 2 to (not
       including) q.  The computation MUST proceed slicewise
       (Section 3.4): first, blocks from slice 0 are computed for all
       lanes (in an arbitrary order of lanes), then blocks from slice 1
       are computed, etc.  The block indices l and z are determined for
       each i, j differently for Argon2d, Argon2i, and Argon2id.

       B[i][j] = G(B[i][j-1], B[l][z])



                       Figure 5: Further Block Generation

   6.  If the number of passes t is larger than 1, we repeat step 5.  We
       compute B[i][0] and B[i][j] for all i raging from (and including)
       0 to (not including) p and for all j ranging from (and including)
       1 to (not including) q.  However, blocks are computed differently
       as the old value is XORed with the new one:

       B[i][0] = G(B[i][q-1], B[l][z]) XOR B[i][0];
       B[i][j] = G(B[i][j-1], B[l][z]) XOR B[i][j].

                            Figure 6: Further Passes

   7.  After t steps have been iterated, the final block C is computed
       as the XOR of the last column:

       C = B[0][q-1] XOR B[1][q-1] XOR ... XOR B[p-1][q-1]

                             Figure 7: Final Block

   8.  The output tag is computed as H’^T(C).

3.3.  Variable-Length Hash Function H’

   Let V_i be a 64-byte block and W_i be its first 32 bytes.  Then we
   define function H’ as follows:

           if T <= 64
               H’^T(A) = H^T(LE32(T)||A)
           else
               r = ceil(T/32)-2
               V_1 = H^(64)(LE32(T)||A)
               V_2 = H^(64)(V_1)
               ...
               V_r = H^(64)(V_{r-1})
               V_{r+1} = H^(T-32*r)(V_{r})
               H’^T(X) = W_1 || W_2 || ... || W_r || V_{r+1}

        Figure 8: Function H’ for Tag and Initial Block Computations

3.4.  Indexing

   To enable parallel block computation, we further partition the memory
   matrix into SL = 4 vertical slices.  The intersection of a slice and
   a lane is called a segment, which has a length of q/SL.  Segments of
   the same slice can be computed in parallel and do not reference
   blocks from each other.  All other blocks can be referenced.

       slice 0    slice 1    slice 2    slice 3
       ___/\___   ___/\___   ___/\___   ___/\___
      /        \ /        \ /        \ /        \
     +----------+----------+----------+----------+
     |          |          |          |          | > lane 0
     +----------+----------+----------+----------+
     |          |          |          |          | > lane 1
     +----------+----------+----------+----------+
     |          |          |          |          | > lane 2
     +----------+----------+----------+----------+
     |         ...        ...        ...         | ...
     +----------+----------+----------+----------+
     |          |          |          |          | > lane p - 1
     +----------+----------+----------+----------+

           Figure 9: Single-Pass Argon2 with p Lanes and 4 Slices

3.4.1.  Computing the 32-Bit Values J_1 and J_2

3.4.1.1.  Argon2d

   J_1 is given by the first 32 bits of block B[i][j-1], while J_2 is



   given by the next 32 bits of block B[i][j-1]:

   J_1 = int32(extract(B[i][j-1], 0))
   J_2 = int32(extract(B[i][j-1], 1))

                    Figure 10: Deriving J1,J2 in Argon2d

3.4.1.2.  Argon2i

   For each segment, we do the following.  First, we compute the value Z
   as:

   Z= ( LE64(r) || LE64(l) || LE64(sl) || LE64(m’) ||
        LE64(t) || LE64(y) )

                Figure 11: Input to Compute J1,J2 in Argon2i

   where

   r:   the pass number
   l:   the lane number
   sl:  the slice number
   m’:  the total number of memory blocks
   t:   the total number of passes
   y:   the Argon2 type (0 for Argon2d, 1 for Argon2i, 2 for Argon2id)

   Then we compute:

   q/(128*SL) 1024-byte values
   G(ZERO(1024),G(ZERO(1024),
   Z || LE64(1) || ZERO(968) )),
   G(ZERO(1024),G(ZERO(1024),
   Z || LE64(2) || ZERO(968) )),... ,
   G(ZERO(1024),G(ZERO(1024),
   Z || LE64(q/(128*SL)) || ZERO(968) )),

   which are partitioned into q/(SL) 8-byte values X, which are viewed
   as X1||X2 and converted to J_1=int32(X1) and J_2=int32(X2).

   The values r, l, sl, m’, t, y, and i are represented as 8 bytes in
   little endian.

3.4.1.3.  Argon2id

   If the pass number is 0 and the slice number is 0 or 1, then compute
   J_1 and J_2 as for Argon2i, else compute J_1 and J_2 as for Argon2d.

3.4.2.  Mapping J_1 and J_2 to Reference Block Index [l][z]

   The value of l = J_2 mod p gives the index of the lane from which the
   block will be taken.  For the first pass (r=0) and the first slice
   (sl=0), the block is taken from the current lane.

   The set W contains the indices that are referenced according to the
   following rules:

   1.  If l is the current lane, then W includes the indices of all
       blocks in the last SL - 1 = 3 segments computed and finished, as
       well as the blocks computed in the current segment in the current
       pass excluding B[i][j-1].

   2.  If l is not the current lane, then W includes the indices of all
       blocks in the last SL - 1 = 3 segments computed and finished in
       lane l.  If B[i][j] is the first block of a segment, then the
       very last index from W is excluded.

   Then take a block from W with a nonuniform distribution over [0, |W|)
   using the following mapping:

   J_1 -> |W|(1 - J_1^2 / 2^(64))



                          Figure 12: Computing J1

   To avoid floating point computation, the following approximation is
   used:

   x = J_1^2 / 2^(32)
   y = (|W| * x) / 2^(32)
   zz = |W| - 1 - y

                      Figure 13: Computing J1, Part 2

   Then take the zz-th index from W; it will be the z value for the
   reference block index [l][z].

3.5.  Compression Function G

   The compression function G is built upon the BLAKE2b-based
   transformation P.  P operates on the 128-byte input, which can be
   viewed as eight 16-byte registers:

   P(A_0, A_1, ... ,A_7) = (B_0, B_1, ... ,B_7)

                     Figure 14: Blake Round Function P

   The compression function G(X, Y) operates on two 1024-byte blocks X
   and Y.  It first computes R = X XOR Y.  Then R is viewed as an 8x8
   matrix of 16-byte registers R_0, R_1, ... , R_63.  Then P is first
   applied to each row, and then to each column to get Z:

   ( Q_0,  Q_1,  Q_2, ... ,  Q_7) <- P( R_0,  R_1,  R_2, ... ,  R_7)
   ( Q_8,  Q_9, Q_10, ... , Q_15) <- P( R_8,  R_9, R_10, ... , R_15)
                                 ...
   (Q_56, Q_57, Q_58, ... , Q_63) <- P(R_56, R_57, R_58, ... , R_63)
   ( Z_0,  Z_8, Z_16, ... , Z_56) <- P( Q_0,  Q_8, Q_16, ... , Q_56)
   ( Z_1,  Z_9, Z_17, ... , Z_57) <- P( Q_1,  Q_9, Q_17, ... , Q_57)
                                 ...
   ( Z_7, Z_15, Z 23, ... , Z_63) <- P( Q_7, Q_15, Q_23, ... , Q_63)

                 Figure 15: Core of Compression Function G

   Finally, G outputs Z XOR R:

   G: (X, Y) -> R -> Q -> Z -> Z XOR R

                            +---+       +---+
                            | X |       | Y |
                            +---+       +---+
                              |           |
                              ---->XOR<----
                            --------|
                            |      \ /
                            |     +---+
                            |     | R |
                            |     +---+
                            |       |
                            |      \ /
                            |   P rowwise
                            |       |
                            |      \ /
                            |     +---+
                            |     | Q |
                            |     +---+
                            |       |
                            |      \ /
                            |  P columnwise
                            |       |
                            |      \ /
                            |     +---+
                            |     | Z |
                            |     +---+
                            |       |



                            |      \ /
                            ------>XOR
                                    |
                                   \ /

                  Figure 16: Argon2 Compression Function G

3.6.  Permutation P

   Permutation P is based on the round function of BLAKE2b.  The eight
   16-byte inputs S_0, S_1, ... , S_7 are viewed as a 4x4 matrix of
   64-bit words, where S_i = (v_{2*i+1} || v_{2*i}):

            v_0  v_1  v_2  v_3
            v_4  v_5  v_6  v_7
            v_8  v_9 v_10 v_11
           v_12 v_13 v_14 v_15

                     Figure 17: Matrix Element Labeling

   It works as follows:

           GB(v_0, v_4,  v_8, v_12)
           GB(v_1, v_5,  v_9, v_13)
           GB(v_2, v_6, v_10, v_14)
           GB(v_3, v_7, v_11, v_15)

           GB(v_0, v_5, v_10, v_15)
           GB(v_1, v_6, v_11, v_12)
           GB(v_2, v_7,  v_8, v_13)
           GB(v_3, v_4,  v_9, v_14)

                  Figure 18: Feeding Matrix Elements to GB

   GB(a, b, c, d) is defined as follows:

           a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
           d = (d XOR a) >>> 32
           c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
           b = (b XOR c) >>> 24

           a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
           d = (d XOR a) >>> 16
           c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
           b = (b XOR c) >>> 63

                          Figure 19: Details of GB

   The modular additions in GB are combined with 64-bit multiplications.
   Multiplications are the only difference from the original BLAKE2b
   design.  This choice is done to increase the circuit depth and thus
   the running time of ASIC implementations, while having roughly the
   same running time on CPUs thanks to parallelism and pipelining.

4.  Parameter Choice

   Argon2d is optimized for settings where the adversary does not get
   regular access to system memory or CPU, i.e., they cannot run side-
   channel attacks based on the timing information, nor can they recover
   the password much faster using garbage collection.  These settings
   are more typical for backend servers and cryptocurrency minings.  For
   practice, we suggest the following settings:

   *  Cryptocurrency mining, which takes 0.1 seconds on a 2 GHz CPU
      using 1 core -- Argon2d with 2 lanes and 250 MB of RAM.

   Argon2id is optimized for more realistic settings, where the
   adversary can possibly access the same machine, use its CPU, or mount
   cold-boot attacks.  We suggest the following settings:

   *  Backend server authentication, which takes 0.5 seconds on a 2 GHz



      CPU using 4 cores -- Argon2id with 8 lanes and 4 GiB of RAM.

   *  Key derivation for hard-drive encryption, which takes 3 seconds on
      a 2 GHz CPU using 2 cores -- Argon2id with 4 lanes and 6 GiB of
      RAM.

   *  Frontend server authentication, which takes 0.5 seconds on a 2 GHz
      CPU using 2 cores -- Argon2id with 4 lanes and 1 GiB of RAM.

   We recommend the following procedure to select the type and the
   parameters for practical use of Argon2.

   1.   If a uniformly safe option that is not tailored to your
        application or hardware is acceptable, select Argon2id with t=1
        iteration, p=4 lanes, m=2^(21) (2 GiB of RAM), 128-bit salt, and
        256-bit tag size.  This is the FIRST RECOMMENDED option.

   2.   If much less memory is available, a uniformly safe option is
        Argon2id with t=3 iterations, p=4 lanes, m=2^(16) (64 MiB of
        RAM), 128-bit salt, and 256-bit tag size.  This is the SECOND
        RECOMMENDED option.

   3.   Otherwise, start with selecting the type y.  If you do not know
        the difference between the types or you consider side-channel
        attacks to be a viable threat, choose Argon2id.

   4.   Select p=4 lanes.

   5.   Figure out the maximum amount of memory that each call can
        afford and translate it to the parameter m.

   6.   Figure out the maximum amount of time (in seconds) that each
        call can afford.

   7.   Select the salt length.  A length of 128 bits is sufficient for
        all applications but can be reduced to 64 bits in the case of
        space constraints.

   8.   Select the tag length.  A length of 128 bits is sufficient for
        most applications, including key derivation.  If longer keys are
        needed, select longer tags.

   9.   If side-channel attacks are a viable threat or if you’re
        uncertain, enable the memory-wiping option in the library call.

   10.  Run the scheme of type y, memory m, and p lanes using a
        different number of passes t.  Figure out the maximum t such
        that the running time does not exceed the affordable time.  If
        it even exceeds for t = 1, reduce m accordingly.

   11.  Use Argon2 with determined values m, p, and t.

5.  Test Vectors

   This section contains test vectors for Argon2.

5.1.  Argon2d Test Vectors

   We provide test vectors with complete outputs (tags).  For the
   convenience of developers, we also provide some interim variables --
   concretely, the first and last memory blocks of each pass.

   =======================================
   Argon2d version number 19
   =======================================
   Memory: 32 KiB
   Passes: 3
   Parallelism: 4 lanes
   Tag length: 32 bytes
   Password[32]: 01 01 01 01 01 01 01 01
                 01 01 01 01 01 01 01 01



                 01 01 01 01 01 01 01 01
                 01 01 01 01 01 01 01 01
   Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
   Secret[8]: 03 03 03 03 03 03 03 03
   Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
   Pre-hashing digest: b8 81 97 91 a0 35 96 60
                       bb 77 09 c8 5f a4 8f 04
                       d5 d8 2c 05 c5 f2 15 cc
                       db 88 54 91 71 7c f7 57
                       08 2c 28 b9 51 be 38 14
                       10 b5 fc 2e b7 27 40 33
                       b9 fd c7 ae 67 2b ca ac
                       5d 17 90 97 a4 af 31 09

    After pass 0:
   Block 0000 [  0]: db2fea6b2c6f5c8a
   Block 0000 [  1]: 719413be00f82634
   Block 0000 [  2]: a1e3f6dd42aa25cc
   Block 0000 [  3]: 3ea8efd4d55ac0d1
   ...
   Block 0031 [124]: 28d17914aea9734c
   Block 0031 [125]: 6a4622176522e398
   Block 0031 [126]: 951aa08aeecb2c05
   Block 0031 [127]: 6a6c49d2cb75d5b6

    After pass 1:
   Block 0000 [  0]: d3801200410f8c0d
   Block 0000 [  1]: 0bf9e8a6e442ba6d
   Block 0000 [  2]: e2ca92fe9c541fcc
   Block 0000 [  3]: 6269fe6db177a388
   ...
   Block 0031 [124]: 9eacfcfbdb3ce0fc
   Block 0031 [125]: 07dedaeb0aee71ac
   Block 0031 [126]: 074435fad91548f4
   Block 0031 [127]: 2dbfff23f31b5883

    After pass 2:
   Block 0000 [  0]: 5f047b575c5ff4d2
   Block 0000 [  1]: f06985dbf11c91a8
   Block 0000 [  2]: 89efb2759f9a8964
   Block 0000 [  3]: 7486a73f62f9b142
   ...
   Block 0031 [124]: 57cfb9d20479da49
   Block 0031 [125]: 4099654bc6607f69
   Block 0031 [126]: f142a1126075a5c8
   Block 0031 [127]: c341b3ca45c10da5
   Tag: 51 2b 39 1b 6f 11 62 97
        53 71 d3 09 19 73 42 94
        f8 68 e3 be 39 84 f3 c1
        a1 3a 4d b9 fa be 4a cb

5.2.  Argon2i Test Vectors

   =======================================
   Argon2i version number 19
   =======================================
   Memory: 32 KiB
   Passes: 3
   Parallelism: 4 lanes
   Tag length: 32 bytes
   Password[32]: 01 01 01 01 01 01 01 01
                 01 01 01 01 01 01 01 01
                 01 01 01 01 01 01 01 01
                 01 01 01 01 01 01 01 01
   Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
   Secret[8]: 03 03 03 03 03 03 03 03
   Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
   Pre-hashing digest: c4 60 65 81 52 76 a0 b3
                       e7 31 73 1c 90 2f 1f d8
                       0c f7 76 90 7f bb 7b 6a
                       5c a7 2e 7b 56 01 1f ee



                       ca 44 6c 86 dd 75 b9 46
                       9a 5e 68 79 de c4 b7 2d
                       08 63 fb 93 9b 98 2e 5f
                       39 7c c7 d1 64 fd da a9

    After pass 0:
   Block 0000 [  0]: f8f9e84545db08f6
   Block 0000 [  1]: 9b073a5c87aa2d97
   Block 0000 [  2]: d1e868d75ca8d8e4
   Block 0000 [  3]: 349634174e1aebcc
   ...
   Block 0031 [124]: 975f596583745e30
   Block 0031 [125]: e349bdd7edeb3092
   Block 0031 [126]: b751a689b7a83659
   Block 0031 [127]: c570f2ab2a86cf00

    After pass 1:
   Block 0000 [  0]: b2e4ddfcf76dc85a
   Block 0000 [  1]: 4ffd0626c89a2327
   Block 0000 [  2]: 4af1440fff212980
   Block 0000 [  3]: 1e77299c7408505b
   ...
   Block 0031 [124]: e4274fd675d1e1d6
   Block 0031 [125]: 903fffb7c4a14c98
   Block 0031 [126]: 7e5db55def471966
   Block 0031 [127]: 421b3c6e9555b79d

    After pass 2:
   Block 0000 [  0]: af2a8bd8482c2f11
   Block 0000 [  1]: 785442294fa55e6d
   Block 0000 [  2]: 9256a768529a7f96
   Block 0000 [  3]: 25a1c1f5bb953766
   ...
   Block 0031 [124]: 68cf72fccc7112b9
   Block 0031 [125]: 91e8c6f8bb0ad70d
   Block 0031 [126]: 4f59c8bd65cbb765
   Block 0031 [127]: 71e436f035f30ed0
   Tag: c8 14 d9 d1 dc 7f 37 aa
        13 f0 d7 7f 24 94 bd a1
        c8 de 6b 01 6d d3 88 d2
        99 52 a4 c4 67 2b 6c e8

5.3.  Argon2id Test Vectors

   =======================================
   Argon2id version number 19
   =======================================
   Memory: 32 KiB, Passes: 3,
   Parallelism: 4 lanes, Tag length: 32 bytes
   Password[32]: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
   01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
   Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
   Secret[8]: 03 03 03 03 03 03 03 03
   Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
   Pre-hashing digest: 28 89 de 48 7e b4 2a e5 00 c0 00 7e d9 25 2f
    10 69 ea de c4 0d 57 65 b4 85 de 6d c2 43 7a 67 b8 54 6a 2f 0a
    cc 1a 08 82 db 8f cf 74 71 4b 47 2e 94 df 42 1a 5d a1 11 2f fa
    11 43 43 70 a1 e9 97

    After pass 0:
   Block 0000 [  0]: 6b2e09f10671bd43
   Block 0000 [  1]: f69f5c27918a21be
   Block 0000 [  2]: dea7810ea41290e1
   Block 0000 [  3]: 6787f7171870f893
   ...
   Block 0031 [124]: 377fa81666dc7f2b
   Block 0031 [125]: 50e586398a9c39c8
   Block 0031 [126]: 6f732732a550924a
   Block 0031 [127]: 81f88b28683ea8e5

    After pass 1:



   Block 0000 [  0]: 3653ec9d01583df9
   Block 0000 [  1]: 69ef53a72d1e1fd3
   Block 0000 [  2]: 35635631744ab54f
   Block 0000 [  3]: 599512e96a37ab6e
   ...
   Block 0031 [124]: 4d4b435cea35caa6
   Block 0031 [125]: c582210d99ad1359
   Block 0031 [126]: d087971b36fd6d77
   Block 0031 [127]: a55222a93754c692

    After pass 2:
   Block 0000 [  0]: 942363968ce597a4
   Block 0000 [  1]: a22448c0bdad5760
   Block 0000 [  2]: a5f80662b6fa8748
   Block 0000 [  3]: a0f9b9ce392f719f
   ...
   Block 0031 [124]: d723359b485f509b
   Block 0031 [125]: cb78824f42375111
   Block 0031 [126]: 35bc8cc6e83b1875
   Block 0031 [127]: 0b012846a40f346a
   Tag: 0d 64 0d f5 8d 78 76 6c 08 c0 37 a3 4a 8b 53 c9 d0
    1e f0 45 2d 75 b6 5e b5 25 20 e9 6b 01 e6 59

6.  IANA Considerations

   This document has no IANA actions.

7.  Security Considerations

7.1.  Security as a Hash Function and KDF

   The collision and preimage resistance levels of Argon2 are equivalent
   to those of the underlying BLAKE2b hash function.  To produce a
   collision, 2^(256) inputs are needed.  To find a preimage, 2^(512)
   inputs must be tried.

   The KDF security is determined by the key length and the size of the
   internal state of hash function H’.  To distinguish the output of the
   keyed Argon2 from random, a minimum of (2^(128),2^length(K)) calls to
   BLAKE2b are needed.

7.2.  Security against Time-Space Trade-off Attacks

   Time-space trade-offs allow computing a memory-hard function storing
   fewer memory blocks at the cost of more calls to the internal
   compression function.  The advantage of trade-off attacks is measured
   in the reduction factor to the time-area product, where memory and
   extra compression function cores contribute to the area and time is
   increased to accommodate the recomputation of missed blocks.  A high
   reduction factor may potentially speed up the preimage search.

   The best-known attack on the 1-pass and 2-pass Argon2i is the low-
   storage attack described in [CBS16], which reduces the time-area
   product (using the peak memory value) by the factor of 5.  The best
   attack on Argon2i with 3 passes or more is described in [AB16], with
   the reduction factor being a function of memory size and the number
   of passes (e.g., for 1 gibibyte of memory, a reduction factor of 3
   for 3 passes, 2.5 for 4 passes, 2 for 6 passes).  The reduction
   factor grows by about 0.5 with every doubling of the memory size.  To
   completely prevent time-space trade-offs from [AB16], the number of
   passes MUST exceed the binary logarithm of memory minus 26.
   Asymptotically, the best attack on 1-pass Argon2i is given in [BZ17],
   with maximal advantage of the adversary upper bounded by
   O(m^(0.233)), where m is the number of blocks.  This attack is also
   asymptotically optimal as [BZ17] also proves the upper bound on any
   attack is O(m^(0.25)).

   The best trade-off attack on t-pass Argon2d is the ranking trade-off
   attack, which reduces the time-area product by the factor of 1.33.

   The best attack on Argon2id can be obtained by complementing the best



   attack on the 1-pass Argon2i with the best attack on a multi-pass
   Argon2d.  Thus, the best trade-off attack on 1-pass Argon2id is the
   combined low-storage attack (for the first half of the memory) and
   the ranking attack (for the second half), which generate the factor
   of about 2.1.  The best trade-off attack on t-pass Argon2id is the
   ranking trade-off attack, which reduces the time-area product by the
   factor of 1.33.

7.3.  Security for Time-Bounded Defenders

   A bottleneck in a system employing the password hashing function is
   often the function latency rather than memory costs.  A rational
   defender would then maximize the brute-force costs for the attacker
   equipped with a list of hashes, salts, and timing information for
   fixed computing time on the defender’s machine.  The attack cost
   estimates from [AB16] imply that for Argon2i, 3 passes is almost
   optimal for most reasonable memory sizes; for Argon2d and Argon2id, 1
   pass maximizes the attack costs for the constant defender time.

7.4.  Recommendations

   The Argon2id variant with t=1 and 2 GiB memory is the FIRST
   RECOMMENDED option and is suggested as a default setting for all
   environments.  This setting is secure against side-channel attacks
   and maximizes adversarial costs on dedicated brute-force hardware.
   The Argon2id variant with t=3 and 64 MiB memory is the SECOND
   RECOMMENDED option and is suggested as a default setting for memory-
   constrained environments.
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