
ï»¿

Internet Research Task Force (IRTF) A. Biryukov
Request for Comments: 9106 D. Dinu
Category: Informational University of Luxembourg
ISSN: 2070-1721 D. Khovratovich
 ABDK Consulting
 S. Josefsson
 SJD AB
 September 2021

 Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work
 Applications

Abstract

 This document describes the Argon2 memory-hard function for password
 hashing and proof-of-work applications. We provide an implementer-
 oriented description with test vectors. The purpose is to simplify
 adoption of Argon2 for Internet protocols. This document is a
 product of the Crypto Forum Research Group (CFRG) in the IRTF.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Research Task Force
 (IRTF). The IRTF publishes the results of Internet-related research
 and development activities. These results might not be suitable for
 deployment. This RFC represents the consensus of the Crypto Forum
 Research Group of the Internet Research Task Force (IRTF). Documents
 approved for publication by the IRSG are not candidates for any level
 of Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9106.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 2. Notation and Conventions
 3. Argon2 Algorithm
 3.1. Argon2 Inputs and Outputs
 3.2. Argon2 Operation
 3.3. Variable-Length Hash Function H’
 3.4. Indexing
 3.4.1. Computing the 32-Bit Values J_1 and J_2
 3.4.2. Mapping J_1 and J_2 to Reference Block Index [l][z]
 3.5. Compression Function G
 3.6. Permutation P
 4. Parameter Choice
 5. Test Vectors
 5.1. Argon2d Test Vectors

 5.2. Argon2i Test Vectors
 5.3. Argon2id Test Vectors
 6. IANA Considerations
 7. Security Considerations
 7.1. Security as a Hash Function and KDF
 7.2. Security against Time-Space Trade-off Attacks
 7.3. Security for Time-Bounded Defenders
 7.4. Recommendations
 8. References
 8.1. Normative References
 8.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This document describes the Argon2 [ARGON2ESP] memory-hard function
 for password hashing and proof-of-work applications. We provide an
 implementer-oriented description with test vectors. The purpose is
 to simplify adoption of Argon2 for Internet protocols. This document
 corresponds to version 1.3 of the Argon2 hash function.

 Argon2 is a memory-hard function [HARD]. It is a streamlined design.
 It aims at the highest memory-filling rate and effective use of
 multiple computing units, while still providing defense against
 trade-off attacks. Argon2 is optimized for the x86 architecture and
 exploits the cache and memory organization of the recent Intel and
 AMD processors. Argon2 has one primary variant, Argon2id, and two
 supplementary variants, Argon2d and Argon2i. Argon2d uses data-
 dependent memory access, which makes it suitable for cryptocurrencies
 and proof-of-work applications with no threats from side-channel
 timing attacks. Argon2i uses data-independent memory access, which
 is preferred for password hashing and password-based key derivation.
 Argon2id works as Argon2i for the first half of the first pass over
 the memory and as Argon2d for the rest, thus providing both side-
 channel attack protection and brute-force cost savings due to time-
 memory trade-offs. Argon2i makes more passes over the memory to
 protect from trade-off attacks [AB15].

 Argon2id MUST be supported by any implementation of this document,
 whereas Argon2d and Argon2i MAY be supported.

 Argon2 is also a mode of operation over a fixed-input-length
 compression function G and a variable-input-length hash function H.
 Even though Argon2 can be potentially used with an arbitrary function
 H, as long as it provides outputs up to 64 bytes, the BLAKE2b
 function [BLAKE2] is used in this document.

 For further background and discussion, see the Argon2 paper [ARGON2].

 This document represents the consensus of the Crypto Forum Research
 Group (CFRG).

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Notation and Conventions

 x^y integer x multiplied by itself integer y times

 a*b multiplication of integer a and integer b

 c-d subtraction of integer d from integer c

 E_f variable E with subscript index f

 g / h integer g divided by integer h. The result is a
 rational number.

 I(j) function I evaluated at j

 K || L string K concatenated with string L

 a XOR b bitwise exclusive-or between bitstrings a and b

 a mod b remainder of integer a modulo integer b, always in
 range [0, b-1]

 a >>> n rotation of 64-bit string a to the right by n bits

 trunc(a) the 64-bit value, truncated to the 32 least
 significant bits

 floor(a) the largest integer not bigger than a

 ceil(a) the smallest integer not smaller than a

 extract(a, i) the i-th set of 32 bits from bitstring a, starting
 from 0-th

 |A| the number of elements in set A

 LE32(a) 32-bit integer a converted to a byte string in little
 endian (for example, 123456 (decimal) is 40 E2 01 00)

 LE64(a) 64-bit integer a converted to a byte string in little
 endian (for example, 123456 (decimal) is 40 E2 01 00
 00 00 00 00)

 int32(s) 32-bit string s is converted to a non-negative integer
 in little endian

 int64(s) 64-bit string s is converted to a non-negative integer
 in little endian

 length(P) the byte length of string P expressed as 32-bit
 integer

 ZERO(P) the P-byte zero string

3. Argon2 Algorithm

3.1. Argon2 Inputs and Outputs

 Argon2 has the following input parameters:

 * Message string P, which is a password for password hashing
 applications. It MUST have a length not greater than 2^(32)-1
 bytes.

 * Nonce S, which is a salt for password hashing applications. It
 MUST have a length not greater than 2^(32)-1 bytes. 16 bytes is
 RECOMMENDED for password hashing. The salt SHOULD be unique for
 each password.

 * Degree of parallelism p determines how many independent (but
 synchronizing) computational chains (lanes) can be run. It MUST
 be an integer value from 1 to 2^(24)-1.

 * Tag length T MUST be an integer number of bytes from 4 to 2^(32)-
 1.

 * Memory size m MUST be an integer number of kibibytes from 8*p to
 2^(32)-1. The actual number of blocks is m’, which is m rounded
 down to the nearest multiple of 4*p.

 * Number of passes t (used to tune the running time independently of

 the memory size) MUST be an integer number from 1 to 2^(32)-1.

 * Version number v MUST be one byte 0x13.

 * Secret value K is OPTIONAL. If used, it MUST have a length not
 greater than 2^(32)-1 bytes.

 * Associated data X is OPTIONAL. If used, it MUST have a length not
 greater than 2^(32)-1 bytes.

 * Type y MUST be 0 for Argon2d, 1 for Argon2i, or 2 for Argon2id.

 The Argon2 output, or "tag", is a string T bytes long.

3.2. Argon2 Operation

 Argon2 uses an internal compression function G with two 1024-byte
 inputs, a 1024-byte output, and an internal hash function H^x(), with
 x being its output length in bytes. Here, H^x() applied to string A
 is the BLAKE2b ([BLAKE2], Section 3.3) function, which takes
 (d,ll,kk=0,nn=x) as parameters, where d is A padded to a multiple of
 128 bytes and ll is the length of d in bytes. The compression
 function G is based on its internal permutation. A variable-length
 hash function H’ built upon H is also used. G is described in
 Section 3.5, and H’ is described in Section 3.3.

 The Argon2 operation is as follows.

 1. Establish H_0 as the 64-byte value as shown below. If K, X, or S
 has zero length, it is just absent, but its length field remains.

 H_0 = H^(64)(LE32(p) || LE32(T) || LE32(m) || LE32(t) ||
 LE32(v) || LE32(y) || LE32(length(P)) || P ||
 LE32(length(S)) || S || LE32(length(K)) || K ||
 LE32(length(X)) || X)

 Figure 1: H_0 Generation

 2. Allocate the memory as m’ 1024-byte blocks, where m’ is derived
 as:

 m’ = 4 * p * floor (m / 4p)

 Figure 2: Memory Allocation

 For p lanes, the memory is organized in a matrix B[i][j] of
 blocks with p rows (lanes) and q = m’ / p columns.

 3. Compute B[i][0] for all i ranging from (and including) 0 to (not
 including) p.

 B[i][0] = H’^(1024)(H_0 || LE32(0) || LE32(i))

 Figure 3: Lane Starting Blocks

 4. Compute B[i][1] for all i ranging from (and including) 0 to (not
 including) p.

 B[i][1] = H’^(1024)(H_0 || LE32(1) || LE32(i))

 Figure 4: Second Lane Blocks

 5. Compute B[i][j] for all i ranging from (and including) 0 to (not
 including) p and for all j ranging from (and including) 2 to (not
 including) q. The computation MUST proceed slicewise
 (Section 3.4): first, blocks from slice 0 are computed for all
 lanes (in an arbitrary order of lanes), then blocks from slice 1
 are computed, etc. The block indices l and z are determined for
 each i, j differently for Argon2d, Argon2i, and Argon2id.

 B[i][j] = G(B[i][j-1], B[l][z])

 Figure 5: Further Block Generation

 6. If the number of passes t is larger than 1, we repeat step 5. We
 compute B[i][0] and B[i][j] for all i raging from (and including)
 0 to (not including) p and for all j ranging from (and including)
 1 to (not including) q. However, blocks are computed differently
 as the old value is XORed with the new one:

 B[i][0] = G(B[i][q-1], B[l][z]) XOR B[i][0];
 B[i][j] = G(B[i][j-1], B[l][z]) XOR B[i][j].

 Figure 6: Further Passes

 7. After t steps have been iterated, the final block C is computed
 as the XOR of the last column:

 C = B[0][q-1] XOR B[1][q-1] XOR ... XOR B[p-1][q-1]

 Figure 7: Final Block

 8. The output tag is computed as H’^T(C).

3.3. Variable-Length Hash Function H’

 Let V_i be a 64-byte block and W_i be its first 32 bytes. Then we
 define function H’ as follows:

 if T <= 64
 H’^T(A) = H^T(LE32(T)||A)
 else
 r = ceil(T/32)-2
 V_1 = H^(64)(LE32(T)||A)
 V_2 = H^(64)(V_1)
 ...
 V_r = H^(64)(V_{r-1})
 V_{r+1} = H^(T-32*r)(V_{r})
 H’^T(X) = W_1 || W_2 || ... || W_r || V_{r+1}

 Figure 8: Function H’ for Tag and Initial Block Computations

3.4. Indexing

 To enable parallel block computation, we further partition the memory
 matrix into SL = 4 vertical slices. The intersection of a slice and
 a lane is called a segment, which has a length of q/SL. Segments of
 the same slice can be computed in parallel and do not reference
 blocks from each other. All other blocks can be referenced.

 slice 0 slice 1 slice 2 slice 3
 ___/___ ___/___ ___/___ ___/___
 / \ / \ / \ / \
 +----------+----------+----------+----------+
 | | | | | > lane 0
 +----------+----------+----------+----------+
 | | | | | > lane 1
 +----------+----------+----------+----------+
 | | | | | > lane 2
 +----------+----------+----------+----------+
 | | ...
 +----------+----------+----------+----------+
 | | | | | > lane p - 1
 +----------+----------+----------+----------+

 Figure 9: Single-Pass Argon2 with p Lanes and 4 Slices

3.4.1. Computing the 32-Bit Values J_1 and J_2

3.4.1.1. Argon2d

 J_1 is given by the first 32 bits of block B[i][j-1], while J_2 is

 given by the next 32 bits of block B[i][j-1]:

 J_1 = int32(extract(B[i][j-1], 0))
 J_2 = int32(extract(B[i][j-1], 1))

 Figure 10: Deriving J1,J2 in Argon2d

3.4.1.2. Argon2i

 For each segment, we do the following. First, we compute the value Z
 as:

 Z= (LE64(r) || LE64(l) || LE64(sl) || LE64(m’) ||
 LE64(t) || LE64(y))

 Figure 11: Input to Compute J1,J2 in Argon2i

 where

 r: the pass number
 l: the lane number
 sl: the slice number
 m’: the total number of memory blocks
 t: the total number of passes
 y: the Argon2 type (0 for Argon2d, 1 for Argon2i, 2 for Argon2id)

 Then we compute:

 q/(128*SL) 1024-byte values
 G(ZERO(1024),G(ZERO(1024),
 Z || LE64(1) || ZERO(968))),
 G(ZERO(1024),G(ZERO(1024),
 Z || LE64(2) || ZERO(968))),... ,
 G(ZERO(1024),G(ZERO(1024),
 Z || LE64(q/(128*SL)) || ZERO(968))),

 which are partitioned into q/(SL) 8-byte values X, which are viewed
 as X1||X2 and converted to J_1=int32(X1) and J_2=int32(X2).

 The values r, l, sl, m’, t, y, and i are represented as 8 bytes in
 little endian.

3.4.1.3. Argon2id

 If the pass number is 0 and the slice number is 0 or 1, then compute
 J_1 and J_2 as for Argon2i, else compute J_1 and J_2 as for Argon2d.

3.4.2. Mapping J_1 and J_2 to Reference Block Index [l][z]

 The value of l = J_2 mod p gives the index of the lane from which the
 block will be taken. For the first pass (r=0) and the first slice
 (sl=0), the block is taken from the current lane.

 The set W contains the indices that are referenced according to the
 following rules:

 1. If l is the current lane, then W includes the indices of all
 blocks in the last SL - 1 = 3 segments computed and finished, as
 well as the blocks computed in the current segment in the current
 pass excluding B[i][j-1].

 2. If l is not the current lane, then W includes the indices of all
 blocks in the last SL - 1 = 3 segments computed and finished in
 lane l. If B[i][j] is the first block of a segment, then the
 very last index from W is excluded.

 Then take a block from W with a nonuniform distribution over [0, |W|)
 using the following mapping:

 J_1 -> |W|(1 - J_1^2 / 2^(64))

 Figure 12: Computing J1

 To avoid floating point computation, the following approximation is
 used:

 x = J_1^2 / 2^(32)
 y = (|W| * x) / 2^(32)
 zz = |W| - 1 - y

 Figure 13: Computing J1, Part 2

 Then take the zz-th index from W; it will be the z value for the
 reference block index [l][z].

3.5. Compression Function G

 The compression function G is built upon the BLAKE2b-based
 transformation P. P operates on the 128-byte input, which can be
 viewed as eight 16-byte registers:

 P(A_0, A_1, ... ,A_7) = (B_0, B_1, ... ,B_7)

 Figure 14: Blake Round Function P

 The compression function G(X, Y) operates on two 1024-byte blocks X
 and Y. It first computes R = X XOR Y. Then R is viewed as an 8x8
 matrix of 16-byte registers R_0, R_1, ... , R_63. Then P is first
 applied to each row, and then to each column to get Z:

 (Q_0, Q_1, Q_2, ... , Q_7) <- P(R_0, R_1, R_2, ... , R_7)
 (Q_8, Q_9, Q_10, ... , Q_15) <- P(R_8, R_9, R_10, ... , R_15)
 ...
 (Q_56, Q_57, Q_58, ... , Q_63) <- P(R_56, R_57, R_58, ... , R_63)
 (Z_0, Z_8, Z_16, ... , Z_56) <- P(Q_0, Q_8, Q_16, ... , Q_56)
 (Z_1, Z_9, Z_17, ... , Z_57) <- P(Q_1, Q_9, Q_17, ... , Q_57)
 ...
 (Z_7, Z_15, Z 23, ... , Z_63) <- P(Q_7, Q_15, Q_23, ... , Q_63)

 Figure 15: Core of Compression Function G

 Finally, G outputs Z XOR R:

 G: (X, Y) -> R -> Q -> Z -> Z XOR R

 +---+ +---+
 | X | | Y |
 +---+ +---+
 | |
 ---->XOR<----
 --------|
 | \ /
 | +---+
 | | R |
 | +---+
 | |
 | \ /
 | P rowwise
 | |
 | \ /
 | +---+
 | | Q |
 | +---+
 | |
 | \ /
 | P columnwise
 | |
 | \ /
 | +---+
 | | Z |
 | +---+
 | |

 | \ /
 ------>XOR
 |
 \ /

 Figure 16: Argon2 Compression Function G

3.6. Permutation P

 Permutation P is based on the round function of BLAKE2b. The eight
 16-byte inputs S_0, S_1, ... , S_7 are viewed as a 4x4 matrix of
 64-bit words, where S_i = (v_{2*i+1} || v_{2*i}):

 v_0 v_1 v_2 v_3
 v_4 v_5 v_6 v_7
 v_8 v_9 v_10 v_11
 v_12 v_13 v_14 v_15

 Figure 17: Matrix Element Labeling

 It works as follows:

 GB(v_0, v_4, v_8, v_12)
 GB(v_1, v_5, v_9, v_13)
 GB(v_2, v_6, v_10, v_14)
 GB(v_3, v_7, v_11, v_15)

 GB(v_0, v_5, v_10, v_15)
 GB(v_1, v_6, v_11, v_12)
 GB(v_2, v_7, v_8, v_13)
 GB(v_3, v_4, v_9, v_14)

 Figure 18: Feeding Matrix Elements to GB

 GB(a, b, c, d) is defined as follows:

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 32
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 24

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 16
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 63

 Figure 19: Details of GB

 The modular additions in GB are combined with 64-bit multiplications.
 Multiplications are the only difference from the original BLAKE2b
 design. This choice is done to increase the circuit depth and thus
 the running time of ASIC implementations, while having roughly the
 same running time on CPUs thanks to parallelism and pipelining.

4. Parameter Choice

 Argon2d is optimized for settings where the adversary does not get
 regular access to system memory or CPU, i.e., they cannot run side-
 channel attacks based on the timing information, nor can they recover
 the password much faster using garbage collection. These settings
 are more typical for backend servers and cryptocurrency minings. For
 practice, we suggest the following settings:

 * Cryptocurrency mining, which takes 0.1 seconds on a 2 GHz CPU
 using 1 core -- Argon2d with 2 lanes and 250 MB of RAM.

 Argon2id is optimized for more realistic settings, where the
 adversary can possibly access the same machine, use its CPU, or mount
 cold-boot attacks. We suggest the following settings:

 * Backend server authentication, which takes 0.5 seconds on a 2 GHz

 CPU using 4 cores -- Argon2id with 8 lanes and 4 GiB of RAM.

 * Key derivation for hard-drive encryption, which takes 3 seconds on
 a 2 GHz CPU using 2 cores -- Argon2id with 4 lanes and 6 GiB of
 RAM.

 * Frontend server authentication, which takes 0.5 seconds on a 2 GHz
 CPU using 2 cores -- Argon2id with 4 lanes and 1 GiB of RAM.

 We recommend the following procedure to select the type and the
 parameters for practical use of Argon2.

 1. If a uniformly safe option that is not tailored to your
 application or hardware is acceptable, select Argon2id with t=1
 iteration, p=4 lanes, m=2^(21) (2 GiB of RAM), 128-bit salt, and
 256-bit tag size. This is the FIRST RECOMMENDED option.

 2. If much less memory is available, a uniformly safe option is
 Argon2id with t=3 iterations, p=4 lanes, m=2^(16) (64 MiB of
 RAM), 128-bit salt, and 256-bit tag size. This is the SECOND
 RECOMMENDED option.

 3. Otherwise, start with selecting the type y. If you do not know
 the difference between the types or you consider side-channel
 attacks to be a viable threat, choose Argon2id.

 4. Select p=4 lanes.

 5. Figure out the maximum amount of memory that each call can
 afford and translate it to the parameter m.

 6. Figure out the maximum amount of time (in seconds) that each
 call can afford.

 7. Select the salt length. A length of 128 bits is sufficient for
 all applications but can be reduced to 64 bits in the case of
 space constraints.

 8. Select the tag length. A length of 128 bits is sufficient for
 most applications, including key derivation. If longer keys are
 needed, select longer tags.

 9. If side-channel attacks are a viable threat or if you’re
 uncertain, enable the memory-wiping option in the library call.

 10. Run the scheme of type y, memory m, and p lanes using a
 different number of passes t. Figure out the maximum t such
 that the running time does not exceed the affordable time. If
 it even exceeds for t = 1, reduce m accordingly.

 11. Use Argon2 with determined values m, p, and t.

5. Test Vectors

 This section contains test vectors for Argon2.

5.1. Argon2d Test Vectors

 We provide test vectors with complete outputs (tags). For the
 convenience of developers, we also provide some interim variables --
 concretely, the first and last memory blocks of each pass.

 =======================================
 Argon2d version number 19
 =======================================
 Memory: 32 KiB
 Passes: 3
 Parallelism: 4 lanes
 Tag length: 32 bytes
 Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01

 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
 Secret[8]: 03 03 03 03 03 03 03 03
 Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
 Pre-hashing digest: b8 81 97 91 a0 35 96 60
 bb 77 09 c8 5f a4 8f 04
 d5 d8 2c 05 c5 f2 15 cc
 db 88 54 91 71 7c f7 57
 08 2c 28 b9 51 be 38 14
 10 b5 fc 2e b7 27 40 33
 b9 fd c7 ae 67 2b ca ac
 5d 17 90 97 a4 af 31 09

 After pass 0:
 Block 0000 [0]: db2fea6b2c6f5c8a
 Block 0000 [1]: 719413be00f82634
 Block 0000 [2]: a1e3f6dd42aa25cc
 Block 0000 [3]: 3ea8efd4d55ac0d1
 ...
 Block 0031 [124]: 28d17914aea9734c
 Block 0031 [125]: 6a4622176522e398
 Block 0031 [126]: 951aa08aeecb2c05
 Block 0031 [127]: 6a6c49d2cb75d5b6

 After pass 1:
 Block 0000 [0]: d3801200410f8c0d
 Block 0000 [1]: 0bf9e8a6e442ba6d
 Block 0000 [2]: e2ca92fe9c541fcc
 Block 0000 [3]: 6269fe6db177a388
 ...
 Block 0031 [124]: 9eacfcfbdb3ce0fc
 Block 0031 [125]: 07dedaeb0aee71ac
 Block 0031 [126]: 074435fad91548f4
 Block 0031 [127]: 2dbfff23f31b5883

 After pass 2:
 Block 0000 [0]: 5f047b575c5ff4d2
 Block 0000 [1]: f06985dbf11c91a8
 Block 0000 [2]: 89efb2759f9a8964
 Block 0000 [3]: 7486a73f62f9b142
 ...
 Block 0031 [124]: 57cfb9d20479da49
 Block 0031 [125]: 4099654bc6607f69
 Block 0031 [126]: f142a1126075a5c8
 Block 0031 [127]: c341b3ca45c10da5
 Tag: 51 2b 39 1b 6f 11 62 97
 53 71 d3 09 19 73 42 94
 f8 68 e3 be 39 84 f3 c1
 a1 3a 4d b9 fa be 4a cb

5.2. Argon2i Test Vectors

 =======================================
 Argon2i version number 19
 =======================================
 Memory: 32 KiB
 Passes: 3
 Parallelism: 4 lanes
 Tag length: 32 bytes
 Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
 Secret[8]: 03 03 03 03 03 03 03 03
 Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
 Pre-hashing digest: c4 60 65 81 52 76 a0 b3
 e7 31 73 1c 90 2f 1f d8
 0c f7 76 90 7f bb 7b 6a
 5c a7 2e 7b 56 01 1f ee

 ca 44 6c 86 dd 75 b9 46
 9a 5e 68 79 de c4 b7 2d
 08 63 fb 93 9b 98 2e 5f
 39 7c c7 d1 64 fd da a9

 After pass 0:
 Block 0000 [0]: f8f9e84545db08f6
 Block 0000 [1]: 9b073a5c87aa2d97
 Block 0000 [2]: d1e868d75ca8d8e4
 Block 0000 [3]: 349634174e1aebcc
 ...
 Block 0031 [124]: 975f596583745e30
 Block 0031 [125]: e349bdd7edeb3092
 Block 0031 [126]: b751a689b7a83659
 Block 0031 [127]: c570f2ab2a86cf00

 After pass 1:
 Block 0000 [0]: b2e4ddfcf76dc85a
 Block 0000 [1]: 4ffd0626c89a2327
 Block 0000 [2]: 4af1440fff212980
 Block 0000 [3]: 1e77299c7408505b
 ...
 Block 0031 [124]: e4274fd675d1e1d6
 Block 0031 [125]: 903fffb7c4a14c98
 Block 0031 [126]: 7e5db55def471966
 Block 0031 [127]: 421b3c6e9555b79d

 After pass 2:
 Block 0000 [0]: af2a8bd8482c2f11
 Block 0000 [1]: 785442294fa55e6d
 Block 0000 [2]: 9256a768529a7f96
 Block 0000 [3]: 25a1c1f5bb953766
 ...
 Block 0031 [124]: 68cf72fccc7112b9
 Block 0031 [125]: 91e8c6f8bb0ad70d
 Block 0031 [126]: 4f59c8bd65cbb765
 Block 0031 [127]: 71e436f035f30ed0
 Tag: c8 14 d9 d1 dc 7f 37 aa
 13 f0 d7 7f 24 94 bd a1
 c8 de 6b 01 6d d3 88 d2
 99 52 a4 c4 67 2b 6c e8

5.3. Argon2id Test Vectors

 =======================================
 Argon2id version number 19
 =======================================
 Memory: 32 KiB, Passes: 3,
 Parallelism: 4 lanes, Tag length: 32 bytes
 Password[32]: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
 Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
 Secret[8]: 03 03 03 03 03 03 03 03
 Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
 Pre-hashing digest: 28 89 de 48 7e b4 2a e5 00 c0 00 7e d9 25 2f
 10 69 ea de c4 0d 57 65 b4 85 de 6d c2 43 7a 67 b8 54 6a 2f 0a
 cc 1a 08 82 db 8f cf 74 71 4b 47 2e 94 df 42 1a 5d a1 11 2f fa
 11 43 43 70 a1 e9 97

 After pass 0:
 Block 0000 [0]: 6b2e09f10671bd43
 Block 0000 [1]: f69f5c27918a21be
 Block 0000 [2]: dea7810ea41290e1
 Block 0000 [3]: 6787f7171870f893
 ...
 Block 0031 [124]: 377fa81666dc7f2b
 Block 0031 [125]: 50e586398a9c39c8
 Block 0031 [126]: 6f732732a550924a
 Block 0031 [127]: 81f88b28683ea8e5

 After pass 1:

 Block 0000 [0]: 3653ec9d01583df9
 Block 0000 [1]: 69ef53a72d1e1fd3
 Block 0000 [2]: 35635631744ab54f
 Block 0000 [3]: 599512e96a37ab6e
 ...
 Block 0031 [124]: 4d4b435cea35caa6
 Block 0031 [125]: c582210d99ad1359
 Block 0031 [126]: d087971b36fd6d77
 Block 0031 [127]: a55222a93754c692

 After pass 2:
 Block 0000 [0]: 942363968ce597a4
 Block 0000 [1]: a22448c0bdad5760
 Block 0000 [2]: a5f80662b6fa8748
 Block 0000 [3]: a0f9b9ce392f719f
 ...
 Block 0031 [124]: d723359b485f509b
 Block 0031 [125]: cb78824f42375111
 Block 0031 [126]: 35bc8cc6e83b1875
 Block 0031 [127]: 0b012846a40f346a
 Tag: 0d 64 0d f5 8d 78 76 6c 08 c0 37 a3 4a 8b 53 c9 d0
 1e f0 45 2d 75 b6 5e b5 25 20 e9 6b 01 e6 59

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

7.1. Security as a Hash Function and KDF

 The collision and preimage resistance levels of Argon2 are equivalent
 to those of the underlying BLAKE2b hash function. To produce a
 collision, 2^(256) inputs are needed. To find a preimage, 2^(512)
 inputs must be tried.

 The KDF security is determined by the key length and the size of the
 internal state of hash function H’. To distinguish the output of the
 keyed Argon2 from random, a minimum of (2^(128),2^length(K)) calls to
 BLAKE2b are needed.

7.2. Security against Time-Space Trade-off Attacks

 Time-space trade-offs allow computing a memory-hard function storing
 fewer memory blocks at the cost of more calls to the internal
 compression function. The advantage of trade-off attacks is measured
 in the reduction factor to the time-area product, where memory and
 extra compression function cores contribute to the area and time is
 increased to accommodate the recomputation of missed blocks. A high
 reduction factor may potentially speed up the preimage search.

 The best-known attack on the 1-pass and 2-pass Argon2i is the low-
 storage attack described in [CBS16], which reduces the time-area
 product (using the peak memory value) by the factor of 5. The best
 attack on Argon2i with 3 passes or more is described in [AB16], with
 the reduction factor being a function of memory size and the number
 of passes (e.g., for 1 gibibyte of memory, a reduction factor of 3
 for 3 passes, 2.5 for 4 passes, 2 for 6 passes). The reduction
 factor grows by about 0.5 with every doubling of the memory size. To
 completely prevent time-space trade-offs from [AB16], the number of
 passes MUST exceed the binary logarithm of memory minus 26.
 Asymptotically, the best attack on 1-pass Argon2i is given in [BZ17],
 with maximal advantage of the adversary upper bounded by
 O(m^(0.233)), where m is the number of blocks. This attack is also
 asymptotically optimal as [BZ17] also proves the upper bound on any
 attack is O(m^(0.25)).

 The best trade-off attack on t-pass Argon2d is the ranking trade-off
 attack, which reduces the time-area product by the factor of 1.33.

 The best attack on Argon2id can be obtained by complementing the best

 attack on the 1-pass Argon2i with the best attack on a multi-pass
 Argon2d. Thus, the best trade-off attack on 1-pass Argon2id is the
 combined low-storage attack (for the first half of the memory) and
 the ranking attack (for the second half), which generate the factor
 of about 2.1. The best trade-off attack on t-pass Argon2id is the
 ranking trade-off attack, which reduces the time-area product by the
 factor of 1.33.

7.3. Security for Time-Bounded Defenders

 A bottleneck in a system employing the password hashing function is
 often the function latency rather than memory costs. A rational
 defender would then maximize the brute-force costs for the attacker
 equipped with a list of hashes, salts, and timing information for
 fixed computing time on the defender’s machine. The attack cost
 estimates from [AB16] imply that for Argon2i, 3 passes is almost
 optimal for most reasonable memory sizes; for Argon2d and Argon2id, 1
 pass maximizes the attack costs for the constant defender time.

7.4. Recommendations

 The Argon2id variant with t=1 and 2 GiB memory is the FIRST
 RECOMMENDED option and is suggested as a default setting for all
 environments. This setting is secure against side-channel attacks
 and maximizes adversarial costs on dedicated brute-force hardware.
 The Argon2id variant with t=3 and 64 MiB memory is the SECOND
 RECOMMENDED option and is suggested as a default setting for memory-
 constrained environments.

8. References

8.1. Normative References

 [BLAKE2] Saarinen, M-J., Ed. and J-P. Aumasson, "The BLAKE2
 Cryptographic Hash and Message Authentication Code (MAC)",
 RFC 7693, DOI 10.17487/RFC7693, November 2015,
 <https://www.rfc-editor.org/info/rfc7693>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [AB15] Biryukov, A. and D. Khovratovich, "Tradeoff Cryptanalysis
 of Memory-Hard Functions", ASIACRYPT 2015,
 DOI 10.1007/978-3-662-48800-3_26, December 2015,
 <https://eprint.iacr.org/2015/227.pdf>.

 [AB16] Alwen, J. and J. Blocki, "Efficiently Computing Data-
 Independent Memory-Hard Functions", CRYPTO 2016,
 DOI 10.1007/978-3-662-53008-5_9, March 2016,
 <https://eprint.iacr.org/2016/115.pdf>.

 [ARGON2] Biryukov, A., Dinu, D., and D. Khovratovich, "Argon2: the
 memory-hard function for password hashing and other
 applications", March 2017,
 <https://www.cryptolux.org/images/0/0d/Argon2.pdf>.

 [ARGON2ESP]
 Biryukov, A., Dinu, D., and D. Khovratovich, "Argon2: New
 Generation of Memory-Hard Functions for Password Hashing
 and Other Applications", Euro SnP 2016,
 DOI 10.1109/EuroSP.2016.31, March 2016,
 <https://www.cryptolux.org/images/d/d0/Argon2ESP.pdf>.

 [BZ17] Blocki, J. and S. Zhou, "On the Depth-Robustness and
 Cumulative Pebbling Cost of Argon2i", TCC 2017,
 DOI 10.1007/978-3-319-70500-2_15, May 2017,
 <https://eprint.iacr.org/2017/442.pdf>.

 [CBS16] Boneh, D., Corrigan-Gibbs, H., and S. Schechter, "Balloon
 Hashing: A Memory-Hard Function Providing Provable
 Protection Against Sequential Attacks", ASIACRYPT 2016,
 DOI 10.1007/978-3-662-53887-6_8, May 2017,
 <https://eprint.iacr.org/2016/027.pdf>.

 [HARD] Alwen, J. and V. Serbinenko, "High Parallel Complexity
 Graphs and Memory-Hard Functions", STOC ’15,
 DOI 10.1145/2746539.2746622, June 2015,
 <https://eprint.iacr.org/2014/238.pdf>.

Acknowledgements

 We greatly thank the following individuals who helped in preparing
 and reviewing this document: Jean-Philippe Aumasson, Samuel Neves,
 Joel Alwen, Jeremiah Blocki, Bill Cox, Arnold Reinhold, Solar
 Designer, Russ Housley, Stanislav Smyshlyaev, Kenny Paterson, Alexey
 Melnikov, and Gwynne Raskind.

 The work described in this document was done before Daniel Dinu
 joined Intel, while he was at the University of Luxembourg.

Authors’ Addresses

 Alex Biryukov
 University of Luxembourg

 Email: alex.biryukov@uni.lu

 Daniel Dinu
 University of Luxembourg

 Email: daniel.dinu@intel.com

 Dmitry Khovratovich
 ABDK Consulting

 Email: khovratovich@gmail.com

 Simon Josefsson
 SJD AB

 Email: simon@josefsson.org
 URI: http://josefsson.org/

