
ï»¿

Internet Engineering Task Force (IETF) M. Thomson, Ed.
Request for Comments: 9113 Mozilla
Obsoletes: 7540, 8740 C. Benfield, Ed.
Category: Standards Track Apple Inc.
ISSN: 2070-1721 June 2022

 HTTP/2

Abstract

 This specification describes an optimized expression of the semantics
 of the Hypertext Transfer Protocol (HTTP), referred to as HTTP
 version 2 (HTTP/2). HTTP/2 enables a more efficient use of network
 resources and a reduced latency by introducing field compression and
 allowing multiple concurrent exchanges on the same connection.

 This document obsoletes RFCs 7540 and 8740.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9113.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. HTTP/2 Protocol Overview
 2.1. Document Organization
 2.2. Conventions and Terminology
 3. Starting HTTP/2
 3.1. HTTP/2 Version Identification
 3.2. Starting HTTP/2 for "https" URIs
 3.3. Starting HTTP/2 with Prior Knowledge
 3.4. HTTP/2 Connection Preface
 4. HTTP Frames
 4.1. Frame Format
 4.2. Frame Size
 4.3. Field Section Compression and Decompression
 4.3.1. Compression State
 5. Streams and Multiplexing
 5.1. Stream States
 5.1.1. Stream Identifiers

 5.1.2. Stream Concurrency
 5.2. Flow Control
 5.2.1. Flow-Control Principles
 5.2.2. Appropriate Use of Flow Control
 5.2.3. Flow-Control Performance
 5.3. Prioritization
 5.3.1. Background on Priority in RFC 7540
 5.3.2. Priority Signaling in This Document
 5.4. Error Handling
 5.4.1. Connection Error Handling
 5.4.2. Stream Error Handling
 5.4.3. Connection Termination
 5.5. Extending HTTP/2
 6. Frame Definitions
 6.1. DATA
 6.2. HEADERS
 6.3. PRIORITY
 6.4. RST_STREAM
 6.5. SETTINGS
 6.5.1. SETTINGS Format
 6.5.2. Defined Settings
 6.5.3. Settings Synchronization
 6.6. PUSH_PROMISE
 6.7. PING
 6.8. GOAWAY
 6.9. WINDOW_UPDATE
 6.9.1. The Flow-Control Window
 6.9.2. Initial Flow-Control Window Size
 6.9.3. Reducing the Stream Window Size
 6.10. CONTINUATION
 7. Error Codes
 8. Expressing HTTP Semantics in HTTP/2
 8.1. HTTP Message Framing
 8.1.1. Malformed Messages
 8.2. HTTP Fields
 8.2.1. Field Validity
 8.2.2. Connection-Specific Header Fields
 8.2.3. Compressing the Cookie Header Field
 8.3. HTTP Control Data
 8.3.1. Request Pseudo-Header Fields
 8.3.2. Response Pseudo-Header Fields
 8.4. Server Push
 8.4.1. Push Requests
 8.4.2. Push Responses
 8.5. The CONNECT Method
 8.6. The Upgrade Header Field
 8.7. Request Reliability
 8.8. Examples
 8.8.1. Simple Request
 8.8.2. Simple Response
 8.8.3. Complex Request
 8.8.4. Response with Body
 8.8.5. Informational Responses
 9. HTTP/2 Connections
 9.1. Connection Management
 9.1.1. Connection Reuse
 9.2. Use of TLS Features
 9.2.1. TLS 1.2 Features
 9.2.2. TLS 1.2 Cipher Suites
 9.2.3. TLS 1.3 Features
 10. Security Considerations
 10.1. Server Authority
 10.2. Cross-Protocol Attacks
 10.3. Intermediary Encapsulation Attacks
 10.4. Cacheability of Pushed Responses
 10.5. Denial-of-Service Considerations
 10.5.1. Limits on Field Block Size
 10.5.2. CONNECT Issues
 10.6. Use of Compression
 10.7. Use of Padding
 10.8. Privacy Considerations

 10.9. Remote Timing Attacks
 11. IANA Considerations
 11.1. HTTP2-Settings Header Field Registration
 11.2. The h2c Upgrade Token
 12. References
 12.1. Normative References
 12.2. Informative References
 Appendix A. Prohibited TLS 1.2 Cipher Suites
 Appendix B. Changes from RFC 7540
 Acknowledgments
 Contributors
 Authors’ Addresses

1. Introduction

 The performance of applications using the Hypertext Transfer Protocol
 (HTTP, [HTTP]) is linked to how each version of HTTP uses the
 underlying transport, and the conditions under which the transport
 operates.

 Making multiple concurrent requests can reduce latency and improve
 application performance. HTTP/1.0 allowed only one request to be
 outstanding at a time on a given TCP [TCP] connection. HTTP/1.1
 [HTTP/1.1] added request pipelining, but this only partially
 addressed request concurrency and still suffers from application-
 layer head-of-line blocking. Therefore, HTTP/1.0 and HTTP/1.1
 clients use multiple connections to a server to make concurrent
 requests.

 Furthermore, HTTP fields are often repetitive and verbose, causing
 unnecessary network traffic as well as causing the initial TCP
 congestion window to quickly fill. This can result in excessive
 latency when multiple requests are made on a new TCP connection.

 HTTP/2 addresses these issues by defining an optimized mapping of
 HTTP’s semantics to an underlying connection. Specifically, it
 allows interleaving of messages on the same connection and uses an
 efficient coding for HTTP fields. It also allows prioritization of
 requests, letting more important requests complete more quickly,
 further improving performance.

 The resulting protocol is more friendly to the network because fewer
 TCP connections can be used in comparison to HTTP/1.x. This means
 less competition with other flows and longer-lived connections, which
 in turn lead to better utilization of available network capacity.
 Note, however, that TCP head-of-line blocking is not addressed by
 this protocol.

 Finally, HTTP/2 also enables more efficient processing of messages
 through use of binary message framing.

 This document obsoletes RFCs 7540 and 8740. Appendix B lists notable
 changes.

2. HTTP/2 Protocol Overview

 HTTP/2 provides an optimized transport for HTTP semantics. HTTP/2
 supports all of the core features of HTTP but aims to be more
 efficient than HTTP/1.1.

 HTTP/2 is a connection-oriented application-layer protocol that runs
 over a TCP connection ([TCP]). The client is the TCP connection
 initiator.

 The basic protocol unit in HTTP/2 is a frame (Section 4.1). Each
 frame type serves a different purpose. For example, HEADERS and DATA
 frames form the basis of HTTP requests and responses (Section 8.1);
 other frame types like SETTINGS, WINDOW_UPDATE, and PUSH_PROMISE are
 used in support of other HTTP/2 features.

 Multiplexing of requests is achieved by having each HTTP request/

 response exchange associated with its own stream (Section 5).
 Streams are largely independent of each other, so a blocked or
 stalled request or response does not prevent progress on other
 streams.

 Effective use of multiplexing depends on flow control and
 prioritization. Flow control (Section 5.2) ensures that it is
 possible to efficiently use multiplexed streams by restricting data
 that is transmitted to what the receiver is able to handle.
 Prioritization (Section 5.3) ensures that limited resources are used
 most effectively. This revision of HTTP/2 deprecates the priority
 signaling scheme from [RFC7540].

 Because HTTP fields used in a connection can contain large amounts of
 redundant data, frames that contain them are compressed
 (Section 4.3). This has especially advantageous impact upon request
 sizes in the common case, allowing many requests to be compressed
 into one packet.

 Finally, HTTP/2 adds a new, optional interaction mode whereby a
 server can push responses to a client (Section 8.4). This is
 intended to allow a server to speculatively send data to a client
 that the server anticipates the client will need, trading off some
 network usage against a potential latency gain. The server does this
 by synthesizing a request, which it sends as a PUSH_PROMISE frame.
 The server is then able to send a response to the synthetic request
 on a separate stream.

2.1. Document Organization

 The HTTP/2 specification is split into four parts:

 * Starting HTTP/2 (Section 3) covers how an HTTP/2 connection is
 initiated.

 * The frame (Section 4) and stream (Section 5) layers describe the
 way HTTP/2 frames are structured and formed into multiplexed
 streams.

 * Frame (Section 6) and error (Section 7) definitions include
 details of the frame and error types used in HTTP/2.

 * HTTP mappings (Section 8) and additional requirements (Section 9)
 describe how HTTP semantics are expressed using frames and
 streams.

 While some of the frame- and stream-layer concepts are isolated from
 HTTP, this specification does not define a completely generic frame
 layer. The frame and stream layers are tailored to the needs of
 HTTP.

2.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

 This specification describes binary formats using the conventions
 described in Section 1.3 of RFC 9000 [QUIC]. Note that this format
 uses network byte order and that high-valued bits are listed before
 low-valued bits.

 The following terms are used:

 client: The endpoint that initiates an HTTP/2 connection. Clients
 send HTTP requests and receive HTTP responses.

 connection: A transport-layer connection between two endpoints.

 connection error: An error that affects the entire HTTP/2
 connection.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication within an HTTP/2
 connection, consisting of a header and a variable-length sequence
 of octets structured according to the frame type.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint that accepts an HTTP/2 connection. Servers
 receive HTTP requests and send HTTP responses.

 stream: A bidirectional flow of frames within the HTTP/2 connection.

 stream error: An error on the individual HTTP/2 stream.

 Finally, the terms "gateway", "intermediary", "proxy", and "tunnel"
 are defined in Section 3.7 of [HTTP]. Intermediaries act as both
 client and server at different times.

 The term "content" as it applies to message bodies is defined in
 Section 6.4 of [HTTP].

3. Starting HTTP/2

 Implementations that generate HTTP requests need to discover whether
 a server supports HTTP/2.

 HTTP/2 uses the "http" and "https" URI schemes defined in Section 4.2
 of [HTTP], with the same default port numbers as HTTP/1.1 [HTTP/1.1].
 These URIs do not include any indication about what HTTP versions an
 upstream server (the immediate peer to which the client wishes to
 establish a connection) supports.

 The means by which support for HTTP/2 is determined is different for
 "http" and "https" URIs. Discovery for "https" URIs is described in
 Section 3.2. HTTP/2 support for "http" URIs can only be discovered
 by out-of-band means and requires prior knowledge of the support as
 described in Section 3.3.

3.1. HTTP/2 Version Identification

 The protocol defined in this document has two identifiers. Creating
 a connection based on either implies the use of the transport,
 framing, and message semantics described in this document.

 * The string "h2" identifies the protocol where HTTP/2 uses
 Transport Layer Security (TLS); see Section 9.2. This identifier
 is used in the TLS Application-Layer Protocol Negotiation (ALPN)
 extension [TLS-ALPN] field and in any place where HTTP/2 over TLS
 is identified.

 The "h2" string is serialized into an ALPN protocol identifier as
 the two-octet sequence: 0x68, 0x32.

 * The "h2c" string was previously used as a token for use in the
 HTTP Upgrade mechanism’s Upgrade header field (Section 7.8 of
 [HTTP]). This usage was never widely deployed and is deprecated

 by this document. The same applies to the HTTP2-Settings header
 field, which was used with the upgrade to "h2c".

3.2. Starting HTTP/2 for "https" URIs

 A client that makes a request to an "https" URI uses TLS [TLS13] with
 the ALPN extension [TLS-ALPN].

 HTTP/2 over TLS uses the "h2" protocol identifier. The "h2c"
 protocol identifier MUST NOT be sent by a client or selected by a
 server; the "h2c" protocol identifier describes a protocol that does
 not use TLS.

 Once TLS negotiation is complete, both the client and the server MUST
 send a connection preface (Section 3.4).

3.3. Starting HTTP/2 with Prior Knowledge

 A client can learn that a particular server supports HTTP/2 by other
 means. For example, a client could be configured with knowledge that
 a server supports HTTP/2.

 A client that knows that a server supports HTTP/2 can establish a TCP
 connection and send the connection preface (Section 3.4) followed by
 HTTP/2 frames. Servers can identify these connections by the
 presence of the connection preface. This only affects the
 establishment of HTTP/2 connections over cleartext TCP; HTTP/2
 connections over TLS MUST use protocol negotiation in TLS [TLS-ALPN].

 Likewise, the server MUST send a connection preface (Section 3.4).

 Without additional information, prior support for HTTP/2 is not a
 strong signal that a given server will support HTTP/2 for future
 connections. For example, it is possible for server configurations
 to change, for configurations to differ between instances in
 clustered servers, or for network conditions to change.

3.4. HTTP/2 Connection Preface

 In HTTP/2, each endpoint is required to send a connection preface as
 a final confirmation of the protocol in use and to establish the
 initial settings for the HTTP/2 connection. The client and server
 each send a different connection preface.

 The client connection preface starts with a sequence of 24 octets,
 which in hex notation is:

 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

 That is, the connection preface starts with the string "PRI *
 HTTP/2.0\r\n\r\nSM\r\n\r\n". This sequence MUST be followed by a
 SETTINGS frame (Section 6.5), which MAY be empty. The client sends
 the client connection preface as the first application data octets of
 a connection.

 | Note: The client connection preface is selected so that a large
 | proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries
 | do not attempt to process further frames. Note that this does
 | not address the concerns raised in [TALKING].

 The server connection preface consists of a potentially empty
 SETTINGS frame (Section 6.5) that MUST be the first frame the server
 sends in the HTTP/2 connection.

 The SETTINGS frames received from a peer as part of the connection
 preface MUST be acknowledged (see Section 6.5.3) after sending the
 connection preface.

 To avoid unnecessary latency, clients are permitted to send
 additional frames to the server immediately after sending the client
 connection preface, without waiting to receive the server connection

 preface. It is important to note, however, that the server
 connection preface SETTINGS frame might include settings that
 necessarily alter how a client is expected to communicate with the
 server. Upon receiving the SETTINGS frame, the client is expected to
 honor any settings established. In some configurations, it is
 possible for the server to transmit SETTINGS before the client sends
 additional frames, providing an opportunity to avoid this issue.

 Clients and servers MUST treat an invalid connection preface as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR. A GOAWAY
 frame (Section 6.8) MAY be omitted in this case, since an invalid
 preface indicates that the peer is not using HTTP/2.

4. HTTP Frames

 Once the HTTP/2 connection is established, endpoints can begin
 exchanging frames.

4.1. Frame Format

 All frames begin with a fixed 9-octet header followed by a variable-
 length frame payload.

 HTTP Frame {
 Length (24),
 Type (8),

 Flags (8),

 Reserved (1),
 Stream Identifier (31),

 Frame Payload (..),
 }

 Figure 1: Frame Layout

 The fields of the frame header are defined as:

 Length: The length of the frame payload expressed as an unsigned
 24-bit integer in units of octets. Values greater than 2^14
 (16,384) MUST NOT be sent unless the receiver has set a larger
 value for SETTINGS_MAX_FRAME_SIZE.

 The 9 octets of the frame header are not included in this value.

 Type: The 8-bit type of the frame. The frame type determines the
 format and semantics of the frame. Frames defined in this
 document are listed in Section 6. Implementations MUST ignore and
 discard frames of unknown types.

 Flags: An 8-bit field reserved for boolean flags specific to the
 frame type.

 Flags are assigned semantics specific to the indicated frame type.
 Unused flags are those that have no defined semantics for a
 particular frame type. Unused flags MUST be ignored on receipt
 and MUST be left unset (0x00) when sending.

 Reserved: A reserved 1-bit field. The semantics of this bit are
 undefined, and the bit MUST remain unset (0x00) when sending and
 MUST be ignored when receiving.

 Stream Identifier: A stream identifier (see Section 5.1.1) expressed
 as an unsigned 31-bit integer. The value 0x00 is reserved for
 frames that are associated with the connection as a whole as
 opposed to an individual stream.

 The structure and content of the frame payload are dependent entirely
 on the frame type.

4.2. Frame Size

 The size of a frame payload is limited by the maximum size that a
 receiver advertises in the SETTINGS_MAX_FRAME_SIZE setting. This
 setting can have any value between 2^14 (16,384) and 2^24-1
 (16,777,215) octets, inclusive.

 All implementations MUST be capable of receiving and minimally
 processing frames up to 2^14 octets in length, plus the 9-octet frame
 header (Section 4.1). The size of the frame header is not included
 when describing frame sizes.

 | Note: Certain frame types, such as PING (Section 6.7), impose
 | additional limits on the amount of frame payload data allowed.

 An endpoint MUST send an error code of FRAME_SIZE_ERROR if a frame
 exceeds the size defined in SETTINGS_MAX_FRAME_SIZE, exceeds any
 limit defined for the frame type, or is too small to contain
 mandatory frame data. A frame size error in a frame that could alter
 the state of the entire connection MUST be treated as a connection
 error (Section 5.4.1); this includes any frame carrying a field block
 (Section 4.3) (that is, HEADERS, PUSH_PROMISE, and CONTINUATION), a
 SETTINGS frame, and any frame with a stream identifier of 0.

 Endpoints are not obligated to use all available space in a frame.
 Responsiveness can be improved by using frames that are smaller than
 the permitted maximum size. Sending large frames can result in
 delays in sending time-sensitive frames (such as RST_STREAM,
 WINDOW_UPDATE, or PRIORITY), which, if blocked by the transmission of
 a large frame, could affect performance.

4.3. Field Section Compression and Decompression

 Field section compression is the process of compressing a set of
 field lines (Section 5.2 of [HTTP]) to form a field block. Field
 section decompression is the process of decoding a field block into a
 set of field lines. Details of HTTP/2 field section compression and
 decompression are defined in [COMPRESSION], which, for historical
 reasons, refers to these processes as header compression and
 decompression.

 Each field block carries all of the compressed field lines of a
 single field section. Header sections also include control data
 associated with the message in the form of pseudo-header fields
 (Section 8.3) that use the same format as a field line.

 | Note: RFC 7540 [RFC7540] used the term "header block" in place
 | of the more generic "field block".

 Field blocks carry control data and header sections for requests,
 responses, promised requests, and pushed responses (see Section 8.4).
 All these messages, except for interim responses and requests
 contained in PUSH_PROMISE (Section 6.6) frames, can optionally
 include a field block that carries a trailer section.

 A field section is a collection of field lines. Each of the field
 lines in a field block carries a single value. The serialized field
 block is then divided into one or more octet sequences, called field
 block fragments. The first field block fragment is transmitted
 within the frame payload of HEADERS (Section 6.2) or PUSH_PROMISE
 (Section 6.6), each of which could be followed by CONTINUATION
 (Section 6.10) frames to carry subsequent field block fragments.

 The Cookie header field [COOKIE] is treated specially by the HTTP
 mapping (see Section 8.2.3).

 A receiving endpoint reassembles the field block by concatenating its
 fragments and then decompresses the block to reconstruct the field
 section.

 A complete field section consists of either:

 * a single HEADERS or PUSH_PROMISE frame, with the END_HEADERS flag
 set, or

 * a HEADERS or PUSH_PROMISE frame with the END_HEADERS flag unset
 and one or more CONTINUATION frames, where the last CONTINUATION
 frame has the END_HEADERS flag set.

 Each field block is processed as a discrete unit. Field blocks MUST
 be transmitted as a contiguous sequence of frames, with no
 interleaved frames of any other type or from any other stream. The
 last frame in a sequence of HEADERS or CONTINUATION frames has the
 END_HEADERS flag set. The last frame in a sequence of PUSH_PROMISE
 or CONTINUATION frames has the END_HEADERS flag set. This allows a
 field block to be logically equivalent to a single frame.

 Field block fragments can only be sent as the frame payload of
 HEADERS, PUSH_PROMISE, or CONTINUATION frames because these frames
 carry data that can modify the compression context maintained by a
 receiver. An endpoint receiving HEADERS, PUSH_PROMISE, or
 CONTINUATION frames needs to reassemble field blocks and perform
 decompression even if the frames are to be discarded. A receiver
 MUST terminate the connection with a connection error (Section 5.4.1)
 of type COMPRESSION_ERROR if it does not decompress a field block.

 A decoding error in a field block MUST be treated as a connection
 error (Section 5.4.1) of type COMPRESSION_ERROR.

4.3.1. Compression State

 Field compression is stateful. Each endpoint has an HPACK encoder
 context and an HPACK decoder context that are used for encoding and
 decoding all field blocks on a connection. Section 4 of
 [COMPRESSION] defines the dynamic table, which is the primary state
 for each context.

 The dynamic table has a maximum size that is set by an HPACK decoder.
 An endpoint communicates the size chosen by its HPACK decoder context
 using the SETTINGS_HEADER_TABLE_SIZE setting; see Section 6.5.2.
 When a connection is established, the dynamic table size for the
 HPACK decoder and encoder at both endpoints starts at 4,096 bytes,
 the initial value of the SETTINGS_HEADER_TABLE_SIZE setting.

 Any change to the maximum value set using SETTINGS_HEADER_TABLE_SIZE
 takes effect when the endpoint acknowledges settings (Section 6.5.3).
 The HPACK encoder at that endpoint can set the dynamic table to any
 size up to the maximum value set by the decoder. An HPACK encoder
 declares the size of the dynamic table with a Dynamic Table Size
 Update instruction (Section 6.3 of [COMPRESSION]).

 Once an endpoint acknowledges a change to SETTINGS_HEADER_TABLE_SIZE
 that reduces the maximum below the current size of the dynamic table,
 its HPACK encoder MUST start the next field block with a Dynamic
 Table Size Update instruction that sets the dynamic table to a size
 that is less than or equal to the reduced maximum; see Section 4.2 of
 [COMPRESSION]. An endpoint MUST treat a field block that follows an
 acknowledgment of the reduction to the maximum dynamic table size as
 a connection error (Section 5.4.1) of type COMPRESSION_ERROR if it
 does not start with a conformant Dynamic Table Size Update
 instruction.

 | Implementers are advised that reducing the value of
 | SETTINGS_HEADER_TABLE_SIZE is not widely interoperable. Use of
 | the connection preface to reduce the value below the initial
 | value of 4,096 is somewhat better supported, but this might
 | fail with some implementations.

5. Streams and Multiplexing

 A "stream" is an independent, bidirectional sequence of frames
 exchanged between the client and server within an HTTP/2 connection.

 Streams have several important characteristics:

 * A single HTTP/2 connection can contain multiple concurrently open
 streams, with either endpoint interleaving frames from multiple
 streams.

 * Streams can be established and used unilaterally or shared by
 either endpoint.

 * Streams can be closed by either endpoint.

 * The order in which frames are sent is significant. Recipients
 process frames in the order they are received. In particular, the
 order of HEADERS and DATA frames is semantically significant.

 * Streams are identified by an integer. Stream identifiers are
 assigned to streams by the endpoint initiating the stream.

5.1. Stream States

 The lifecycle of a stream is shown in Figure 2.

 +--------+
 send PP | | recv PP
 ,--------+ idle +--------.
 / | | \
 v +--------+ v
 +----------+ | +----------+
 | | | send H / | |
 ,------+ reserved | | recv H | reserved +------.
 | | (local) | | | (remote) | |
 | +---+------+ v +------+---+ |
 | | +--------+ | | | |
 | | recv ES | | send ES | |
 | send H | ,-------+ open +-------. | recv H |
 | | / | | \ | |
 | v v +---+----+ v v |
 | +----------+ | +----------+ | | | | |
 | | half- | | | half- | |
 | | closed | | send R / | closed | |
 | | (remote) | | recv R | (local) | |
 | +----+-----+ | +-----+----+ |
 | | | | |
 | | send ES / | recv ES / | |
 | | send R / v send R / | |
 | | recv R +--------+ recv R | |
 | send R / ‘----------->| |<-----------’ send R / |
 | recv R | closed | recv R |
 ‘----------------------->| |<-----------------------’
 +--------+

 Figure 2: Stream States

 send: endpoint sends this frame
 recv: endpoint receives this frame
 H: HEADERS frame (with implied CONTINUATION frames)
 ES: END_STREAM flag
 R: RST_STREAM frame
 PP: PUSH_PROMISE frame (with implied CONTINUATION frames); state
 transitions are for the promised stream

 Note that this diagram shows stream state transitions and the frames
 and flags that affect those transitions only. In this regard,
 CONTINUATION frames do not result in state transitions; they are
 effectively part of the HEADERS or PUSH_PROMISE that they follow.
 For the purpose of state transitions, the END_STREAM flag is
 processed as a separate event to the frame that bears it; a HEADERS
 frame with the END_STREAM flag set can cause two state transitions.

 Both endpoints have a subjective view of the state of a stream that
 could be different when frames are in transit. Endpoints do not

 coordinate the creation of streams; they are created unilaterally by
 either endpoint. The negative consequences of a mismatch in states
 are limited to the "closed" state after sending RST_STREAM, where
 frames might be received for some time after closing.

 Streams have the following states:

 idle: All streams start in the "idle" state.

 The following transitions are valid from this state:

 * Sending a HEADERS frame as a client, or receiving a HEADERS
 frame as a server, causes the stream to become "open". The
 stream identifier is selected as described in Section 5.1.1.
 The same HEADERS frame can also cause a stream to immediately
 become "half-closed".

 * Sending a PUSH_PROMISE frame on another stream reserves the
 idle stream that is identified for later use. The stream state
 for the reserved stream transitions to "reserved (local)".
 Only a server may send PUSH_PROMISE frames.

 * Receiving a PUSH_PROMISE frame on another stream reserves an
 idle stream that is identified for later use. The stream state
 for the reserved stream transitions to "reserved (remote)".
 Only a client may receive PUSH_PROMISE frames.

 * Note that the PUSH_PROMISE frame is not sent on the idle stream
 but references the newly reserved stream in the Promised Stream
 ID field.

 * Opening a stream with a higher-valued stream identifier causes
 the stream to transition immediately to a "closed" state; note
 that this transition is not shown in the diagram.

 Receiving any frame other than HEADERS or PRIORITY on a stream in
 this state MUST be treated as a connection error (Section 5.4.1)
 of type PROTOCOL_ERROR. If this stream is initiated by the
 server, as described in Section 5.1.1, then receiving a HEADERS
 frame MUST also be treated as a connection error (Section 5.4.1)
 of type PROTOCOL_ERROR.

 reserved (local): A stream in the "reserved (local)" state is one
 that has been promised by sending a PUSH_PROMISE frame. A
 PUSH_PROMISE frame reserves an idle stream by associating the
 stream with an open stream that was initiated by the remote peer
 (see Section 8.4).

 In this state, only the following transitions are possible:

 * The endpoint can send a HEADERS frame. This causes the stream
 to open in a "half-closed (remote)" state.

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

 An endpoint MUST NOT send any type of frame other than HEADERS,
 RST_STREAM, or PRIORITY in this state.

 A PRIORITY or WINDOW_UPDATE frame MAY be received in this state.
 Receiving any type of frame other than RST_STREAM, PRIORITY, or
 WINDOW_UPDATE on a stream in this state MUST be treated as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 reserved (remote): A stream in the "reserved (remote)" state has
 been reserved by a remote peer.

 In this state, only the following transitions are possible:

 * Receiving a HEADERS frame causes the stream to transition to
 "half-closed (local)".

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

 An endpoint MUST NOT send any type of frame other than RST_STREAM,
 WINDOW_UPDATE, or PRIORITY in this state.

 Receiving any type of frame other than HEADERS, RST_STREAM, or
 PRIORITY on a stream in this state MUST be treated as a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

 open: A stream in the "open" state may be used by both peers to send
 frames of any type. In this state, sending peers observe
 advertised stream-level flow-control limits (Section 5.2).

 From this state, either endpoint can send a frame with an
 END_STREAM flag set, which causes the stream to transition into
 one of the "half-closed" states. An endpoint sending an
 END_STREAM flag causes the stream state to become "half-closed
 (local)"; an endpoint receiving an END_STREAM flag causes the
 stream state to become "half-closed (remote)".

 Either endpoint can send a RST_STREAM frame from this state,
 causing it to transition immediately to "closed".

 half-closed (local): A stream that is in the "half-closed (local)"
 state cannot be used for sending frames other than WINDOW_UPDATE,
 PRIORITY, and RST_STREAM.

 A stream transitions from this state to "closed" when a frame is
 received with the END_STREAM flag set or when either peer sends a
 RST_STREAM frame.

 An endpoint can receive any type of frame in this state.
 Providing flow-control credit using WINDOW_UPDATE frames is
 necessary to continue receiving flow-controlled frames. In this
 state, a receiver can ignore WINDOW_UPDATE frames, which might
 arrive for a short period after a frame with the END_STREAM flag
 set is sent.

 PRIORITY frames can be received in this state.

 half-closed (remote): A stream that is "half-closed (remote)" is no
 longer being used by the peer to send frames. In this state, an
 endpoint is no longer obligated to maintain a receiver flow-
 control window.

 If an endpoint receives additional frames, other than
 WINDOW_UPDATE, PRIORITY, or RST_STREAM, for a stream that is in
 this state, it MUST respond with a stream error (Section 5.4.2) of
 type STREAM_CLOSED.

 A stream that is "half-closed (remote)" can be used by the
 endpoint to send frames of any type. In this state, the endpoint
 continues to observe advertised stream-level flow-control limits
 (Section 5.2).

 A stream can transition from this state to "closed" by sending a
 frame with the END_STREAM flag set or when either peer sends a
 RST_STREAM frame.

 closed: The "closed" state is the terminal state.

 A stream enters the "closed" state after an endpoint both sends
 and receives a frame with an END_STREAM flag set. A stream also
 enters the "closed" state after an endpoint either sends or
 receives a RST_STREAM frame.

 An endpoint MUST NOT send frames other than PRIORITY on a closed
 stream. An endpoint MAY treat receipt of any other type of frame
 on a closed stream as a connection error (Section 5.4.1) of type

 STREAM_CLOSED, except as noted below.

 An endpoint that sends a frame with the END_STREAM flag set or a
 RST_STREAM frame might receive a WINDOW_UPDATE or RST_STREAM frame
 from its peer in the time before the peer receives and processes
 the frame that closes the stream.

 An endpoint that sends a RST_STREAM frame on a stream that is in
 the "open" or "half-closed (local)" state could receive any type
 of frame. The peer might have sent or enqueued for sending these
 frames before processing the RST_STREAM frame. An endpoint MUST
 minimally process and then discard any frames it receives in this
 state. This means updating header compression state for HEADERS
 and PUSH_PROMISE frames. Receiving a PUSH_PROMISE frame also
 causes the promised stream to become "reserved (remote)", even
 when the PUSH_PROMISE frame is received on a closed stream.
 Additionally, the content of DATA frames counts toward the
 connection flow-control window.

 An endpoint can perform this minimal processing for all streams
 that are in the "closed" state. Endpoints MAY use other signals
 to detect that a peer has received the frames that caused the
 stream to enter the "closed" state and treat receipt of any frame
 other than PRIORITY as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR. Endpoints can use frames that indicate that the
 peer has received the closing signal to drive this. Endpoints
 SHOULD NOT use timers for this purpose. For example, an endpoint
 that sends a SETTINGS frame after closing a stream can safely
 treat receipt of a DATA frame on that stream as an error after
 receiving an acknowledgment of the settings. Other things that
 might be used are PING frames, receiving data on streams that were
 created after closing the stream, or responses to requests created
 after closing the stream.

 In the absence of more specific rules, implementations SHOULD treat
 the receipt of a frame that is not expressly permitted in the
 description of a state as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR. Note that PRIORITY can be sent and received in any
 stream state.

 The rules in this section only apply to frames defined in this
 document. Receipt of frames for which the semantics are unknown
 cannot be treated as an error, as the conditions for sending and
 receiving those frames are also unknown; see Section 5.5.

 An example of the state transitions for an HTTP request/response
 exchange can be found in Section 8.8. An example of the state
 transitions for server push can be found in Sections 8.4.1 and 8.4.2.

5.1.1. Stream Identifiers

 Streams are identified by an unsigned 31-bit integer. Streams
 initiated by a client MUST use odd-numbered stream identifiers; those
 initiated by the server MUST use even-numbered stream identifiers. A
 stream identifier of zero (0x00) is used for connection control
 messages; the stream identifier of zero cannot be used to establish a
 new stream.

 The identifier of a newly established stream MUST be numerically
 greater than all streams that the initiating endpoint has opened or
 reserved. This governs streams that are opened using a HEADERS frame
 and streams that are reserved using PUSH_PROMISE. An endpoint that
 receives an unexpected stream identifier MUST respond with a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 A HEADERS frame will transition the client-initiated stream
 identified by the stream identifier in the frame header from "idle"
 to "open". A PUSH_PROMISE frame will transition the server-initiated
 stream identified by the Promised Stream ID field in the frame
 payload from "idle" to "reserved (local)" or "reserved (remote)".
 When a stream transitions out of the "idle" state, all streams in the

 "idle" state that might have been opened by the peer with a lower-
 valued stream identifier immediately transition to "closed". That
 is, an endpoint may skip a stream identifier, with the effect being
 that the skipped stream is immediately closed.

 Stream identifiers cannot be reused. Long-lived connections can
 result in an endpoint exhausting the available range of stream
 identifiers. A client that is unable to establish a new stream
 identifier can establish a new connection for new streams. A server
 that is unable to establish a new stream identifier can send a GOAWAY
 frame so that the client is forced to open a new connection for new
 streams.

5.1.2. Stream Concurrency

 A peer can limit the number of concurrently active streams using the
 SETTINGS_MAX_CONCURRENT_STREAMS parameter (see Section 6.5.2) within
 a SETTINGS frame. The maximum concurrent streams setting is specific
 to each endpoint and applies only to the peer that receives the
 setting. That is, clients specify the maximum number of concurrent
 streams the server can initiate, and servers specify the maximum
 number of concurrent streams the client can initiate.

 Streams that are in the "open" state or in either of the "half-
 closed" states count toward the maximum number of streams that an
 endpoint is permitted to open. Streams in any of these three states
 count toward the limit advertised in the
 SETTINGS_MAX_CONCURRENT_STREAMS setting. Streams in either of the
 "reserved" states do not count toward the stream limit.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a HEADERS frame that causes its advertised concurrent
 stream limit to be exceeded MUST treat this as a stream error
 (Section 5.4.2) of type PROTOCOL_ERROR or REFUSED_STREAM. The choice
 of error code determines whether the endpoint wishes to enable
 automatic retry (see Section 8.7 for details).

 An endpoint that wishes to reduce the value of
 SETTINGS_MAX_CONCURRENT_STREAMS to a value that is below the current
 number of open streams can either close streams that exceed the new
 value or allow streams to complete.

5.2. Flow Control

 Using streams for multiplexing introduces contention over use of the
 TCP connection, resulting in blocked streams. A flow-control scheme
 ensures that streams on the same connection do not destructively
 interfere with each other. Flow control is used for both individual
 streams and the connection as a whole.

 HTTP/2 provides for flow control through use of the WINDOW_UPDATE
 frame (Section 6.9).

5.2.1. Flow-Control Principles

 HTTP/2 stream flow control aims to allow a variety of flow-control
 algorithms to be used without requiring protocol changes. Flow
 control in HTTP/2 has the following characteristics:

 1. Flow control is specific to a connection. HTTP/2 flow control
 operates between the endpoints of a single hop and not over the
 entire end-to-end path.

 2. Flow control is based on WINDOW_UPDATE frames. Receivers
 advertise how many octets they are prepared to receive on a
 stream and for the entire connection. This is a credit-based
 scheme.

 3. Flow control is directional with overall control provided by the
 receiver. A receiver MAY choose to set any window size that it
 desires for each stream and for the entire connection. A sender

 MUST respect flow-control limits imposed by a receiver. Clients,
 servers, and intermediaries all independently advertise their
 flow-control window as a receiver and abide by the flow-control
 limits set by their peer when sending.

 4. The initial value for the flow-control window is 65,535 octets
 for both new streams and the overall connection.

 5. The frame type determines whether flow control applies to a
 frame. Of the frames specified in this document, only DATA
 frames are subject to flow control; all other frame types do not
 consume space in the advertised flow-control window. This
 ensures that important control frames are not blocked by flow
 control.

 6. An endpoint can choose to disable its own flow control, but an
 endpoint cannot ignore flow-control signals from its peer.

 7. HTTP/2 defines only the format and semantics of the WINDOW_UPDATE
 frame (Section 6.9). This document does not stipulate how a
 receiver decides when to send this frame or the value that it
 sends, nor does it specify how a sender chooses to send packets.
 Implementations are able to select any algorithm that suits their
 needs.

 Implementations are also responsible for prioritizing the sending of
 requests and responses, choosing how to avoid head-of-line blocking
 for requests, and managing the creation of new streams. Algorithm
 choices for these could interact with any flow-control algorithm.

5.2.2. Appropriate Use of Flow Control

 Flow control is defined to protect endpoints that are operating under
 resource constraints. For example, a proxy needs to share memory
 between many connections and also might have a slow upstream
 connection and a fast downstream one. Flow control addresses cases
 where the receiver is unable to process data on one stream yet wants
 to continue to process other streams in the same connection.

 Deployments that do not require this capability can advertise a flow-
 control window of the maximum size (2^31-1) and can maintain this
 window by sending a WINDOW_UPDATE frame when any data is received.
 This effectively disables flow control for that receiver.
 Conversely, a sender is always subject to the flow-control window
 advertised by the receiver.

 Deployments with constrained resources (for example, memory) can
 employ flow control to limit the amount of memory a peer can consume.
 Note, however, that this can lead to suboptimal use of available
 network resources if flow control is enabled without knowledge of the
 bandwidth * delay product (see [RFC7323]).

 Even with full awareness of the current bandwidth * delay product,
 implementation of flow control can be difficult. Endpoints MUST read
 and process HTTP/2 frames from the TCP receive buffer as soon as data
 is available. Failure to read promptly could lead to a deadlock when
 critical frames, such as WINDOW_UPDATE, are not read and acted upon.
 Reading frames promptly does not expose endpoints to resource
 exhaustion attacks, as HTTP/2 flow control limits resource
 commitments.

5.2.3. Flow-Control Performance

 If an endpoint cannot ensure that its peer always has available flow-
 control window space that is greater than the peer’s bandwidth *
 delay product on this connection, its receive throughput will be
 limited by HTTP/2 flow control. This will result in degraded
 performance.

 Sending timely WINDOW_UPDATE frames can improve performance.
 Endpoints will want to balance the need to improve receive throughput

 with the need to manage resource exhaustion risks and should take
 careful note of Section 10.5 in defining their strategy to manage
 window sizes.

5.3. Prioritization

 In a multiplexed protocol like HTTP/2, prioritizing allocation of
 bandwidth and computation resources to streams can be critical to
 attaining good performance. A poor prioritization scheme can result
 in HTTP/2 providing poor performance. With no parallelism at the TCP
 layer, performance could be significantly worse than HTTP/1.1.

 A good prioritization scheme benefits from the application of
 contextual knowledge such as the content of resources, how resources
 are interrelated, and how those resources will be used by a peer. In
 particular, clients can possess knowledge about the priority of
 requests that is relevant to server prioritization. In those cases,
 having clients provide priority information can improve performance.

5.3.1. Background on Priority in RFC 7540

 RFC 7540 defined a rich system for signaling priority of requests.
 However, this system proved to be complex, and it was not uniformly
 implemented.

 The flexible scheme meant that it was possible for clients to express
 priorities in very different ways, with little consistency in the
 approaches that were adopted. For servers, implementing generic
 support for the scheme was complex. Implementation of priorities was
 uneven in both clients and servers. Many server deployments ignored
 client signals when prioritizing their handling of requests.

 In short, the prioritization signaling in RFC 7540 [RFC7540] was not
 successful.

5.3.2. Priority Signaling in This Document

 This update to HTTP/2 deprecates the priority signaling defined in
 RFC 7540 [RFC7540]. The bulk of the text related to priority signals
 is not included in this document. The description of frame fields
 and some of the mandatory handling is retained to ensure that
 implementations of this document remain interoperable with
 implementations that use the priority signaling described in RFC
 7540.

 A thorough description of the RFC 7540 priority scheme remains in
 Section 5.3 of [RFC7540].

 Signaling priority information is necessary to attain good
 performance in many cases. Where signaling priority information is
 important, endpoints are encouraged to use an alternative scheme,
 such as the scheme described in [HTTP-PRIORITY].

 Though the priority signaling from RFC 7540 was not widely adopted,
 the information it provides can still be useful in the absence of
 better information. Endpoints that receive priority signals in
 HEADERS or PRIORITY frames can benefit from applying that
 information. In particular, implementations that consume these
 signals would not benefit from discarding these priority signals in
 the absence of alternatives.

 Servers SHOULD use other contextual information in determining
 priority of requests in the absence of any priority signals. Servers
 MAY interpret the complete absence of signals as an indication that
 the client has not implemented the feature. The defaults described
 in Section 5.3.5 of [RFC7540] are known to have poor performance
 under most conditions, and their use is unlikely to be deliberate.

5.4. Error Handling

 HTTP/2 framing permits two classes of errors:

 * An error condition that renders the entire connection unusable is
 a connection error.

 * An error in an individual stream is a stream error.

 A list of error codes is included in Section 7.

 It is possible that an endpoint will encounter frames that would
 cause multiple errors. Implementations MAY discover multiple errors
 during processing, but they SHOULD report at most one stream and one
 connection error as a result.

 The first stream error reported for a given stream prevents any other
 errors on that stream from being reported. In comparison, the
 protocol permits multiple GOAWAY frames, though an endpoint SHOULD
 report just one type of connection error unless an error is
 encountered during graceful shutdown. If this occurs, an endpoint
 MAY send an additional GOAWAY frame with the new error code, in
 addition to any prior GOAWAY that contained NO_ERROR.

 If an endpoint detects multiple different errors, it MAY choose to
 report any one of those errors. If a frame causes a connection
 error, that error MUST be reported. Additionally, an endpoint MAY
 use any applicable error code when it detects an error condition; a
 generic error code (such as PROTOCOL_ERROR or INTERNAL_ERROR) can
 always be used in place of more specific error codes.

5.4.1. Connection Error Handling

 A connection error is any error that prevents further processing of
 the frame layer or corrupts any connection state.

 An endpoint that encounters a connection error SHOULD first send a
 GOAWAY frame (Section 6.8) with the stream identifier of the last
 stream that it successfully received from its peer. The GOAWAY frame
 includes an error code (Section 7) that indicates why the connection
 is terminating. After sending the GOAWAY frame for an error
 condition, the endpoint MUST close the TCP connection.

 It is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. In the event of a connection error, GOAWAY only
 provides a best-effort attempt to communicate with the peer about why
 the connection is being terminated.

 An endpoint can end a connection at any time. In particular, an
 endpoint MAY choose to treat a stream error as a connection error.
 Endpoints SHOULD send a GOAWAY frame when ending a connection,
 providing that circumstances permit it.

5.4.2. Stream Error Handling

 A stream error is an error related to a specific stream that does not
 affect processing of other streams.

 An endpoint that detects a stream error sends a RST_STREAM frame
 (Section 6.4) that contains the stream identifier of the stream where
 the error occurred. The RST_STREAM frame includes an error code that
 indicates the type of error.

 A RST_STREAM is the last frame that an endpoint can send on a stream.
 The peer that sends the RST_STREAM frame MUST be prepared to receive
 any frames that were sent or enqueued for sending by the remote peer.
 These frames can be ignored, except where they modify connection
 state (such as the state maintained for field section compression
 (Section 4.3) or flow control).

 Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
 for any stream. However, an endpoint MAY send additional RST_STREAM
 frames if it receives frames on a closed stream after more than a
 round-trip time. This behavior is permitted to deal with misbehaving

 implementations.

 To avoid looping, an endpoint MUST NOT send a RST_STREAM in response
 to a RST_STREAM frame.

5.4.3. Connection Termination

 If the TCP connection is closed or reset while streams remain in the
 "open" or "half-closed" states, then the affected streams cannot be
 automatically retried (see Section 8.7 for details).

5.5. Extending HTTP/2

 HTTP/2 permits extension of the protocol. Within the limitations
 described in this section, protocol extensions can be used to provide
 additional services or alter any aspect of the protocol. Extensions
 are effective only within the scope of a single HTTP/2 connection.

 This applies to the protocol elements defined in this document. This
 does not affect the existing options for extending HTTP, such as
 defining new methods, status codes, or fields (see Section 16 of
 [HTTP]).

 Extensions are permitted to use new frame types (Section 4.1), new
 settings (Section 6.5), or new error codes (Section 7). Registries
 for managing these extension points are defined in Section 11 of
 [RFC7540].

 Implementations MUST ignore unknown or unsupported values in all
 extensible protocol elements. Implementations MUST discard frames
 that have unknown or unsupported types. This means that any of these
 extension points can be safely used by extensions without prior
 arrangement or negotiation. However, extension frames that appear in
 the middle of a field block (Section 4.3) are not permitted; these
 MUST be treated as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Extensions SHOULD avoid changing protocol elements defined in this
 document or elements for which no extension mechanism is defined.
 This includes changes to the layout of frames, additions or changes
 to the way that frames are composed into HTTP messages (Section 8.1),
 the definition of pseudo-header fields, or changes to any protocol
 element that a compliant endpoint might treat as a connection error
 (Section 5.4.1).

 An extension that changes existing protocol elements or state MUST be
 negotiated before being used. For example, an extension that changes
 the layout of the HEADERS frame cannot be used until the peer has
 given a positive signal that this is acceptable. In this case, it
 could also be necessary to coordinate when the revised layout comes
 into effect. For example, treating frames other than DATA frames as
 flow controlled requires a change in semantics that both endpoints
 need to understand, so this can only be done through negotiation.

 This document doesn’t mandate a specific method for negotiating the
 use of an extension but notes that a setting (Section 6.5.2) could be
 used for that purpose. If both peers set a value that indicates
 willingness to use the extension, then the extension can be used. If
 a setting is used for extension negotiation, the initial value MUST
 be defined in such a fashion that the extension is initially
 disabled.

6. Frame Definitions

 This specification defines a number of frame types, each identified
 by a unique 8-bit type code. Each frame type serves a distinct
 purpose in the establishment and management of either the connection
 as a whole or individual streams.

 The transmission of specific frame types can alter the state of a
 connection. If endpoints fail to maintain a synchronized view of the

 connection state, successful communication within the connection will
 no longer be possible. Therefore, it is important that endpoints
 have a shared comprehension of how the state is affected by the use
 of any given frame.

6.1. DATA

 DATA frames (type=0x00) convey arbitrary, variable-length sequences
 of octets associated with a stream. One or more DATA frames are
 used, for instance, to carry HTTP request or response message
 contents.

 DATA frames MAY also contain padding. Padding can be added to DATA
 frames to obscure the size of messages. Padding is a security
 feature; see Section 10.7.

 DATA Frame {
 Length (24),
 Type (8) = 0x00,

 Unused Flags (4),
 PADDED Flag (1),
 Unused Flags (2),
 END_STREAM Flag (1),

 Reserved (1),
 Stream Identifier (31),

 [Pad Length (8)],
 Data (..),
 Padding (..2040),
 }

 Figure 3: DATA Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The DATA frame contains the
 following additional fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is conditional and is only
 present if the PADDED flag is set.

 Data: Application data. The amount of data is the remainder of the
 frame payload after subtracting the length of the other fields
 that are present.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The DATA frame defines the following flags:

 PADDED (0x08): When set, the PADDED flag indicates that the Pad
 Length field and any padding that it describes are present.

 END_STREAM (0x01): When set, the END_STREAM flag indicates that this
 frame is the last that the endpoint will send for the identified
 stream. Setting this flag causes the stream to enter one of the
 "half-closed" states or the "closed" state (Section 5.1).

 | Note: An endpoint that learns of stream closure after sending
 | all data can close a stream by sending a STREAM frame with a
 | zero-length Data field and the END_STREAM flag set. This is
 | only possible if the endpoint does not send trailers, as the
 | END_STREAM flag appears on a HEADERS frame in that case; see
 | Section 8.1.

 DATA frames MUST be associated with a stream. If a DATA frame is
 received whose Stream Identifier field is 0x00, the recipient MUST

 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 DATA frames are subject to flow control and can only be sent when a
 stream is in the "open" or "half-closed (remote)" state. The entire
 DATA frame payload is included in flow control, including the Pad
 Length and Padding fields if present. If a DATA frame is received
 whose stream is not in the "open" or "half-closed (local)" state, the
 recipient MUST respond with a stream error (Section 5.4.2) of type
 STREAM_CLOSED.

 The total number of padding octets is determined by the value of the
 Pad Length field. If the length of the padding is the length of the
 frame payload or greater, the recipient MUST treat this as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 | Note: A frame can be increased in size by one octet by
 | including a Pad Length field with a value of zero.

6.2. HEADERS

 The HEADERS frame (type=0x01) is used to open a stream (Section 5.1),
 and additionally carries a field block fragment. Despite the name, a
 HEADERS frame can carry a header section or a trailer section.
 HEADERS frames can be sent on a stream in the "idle", "reserved
 (local)", "open", or "half-closed (remote)" state.

 HEADERS Frame {
 Length (24),
 Type (8) = 0x01,

 Unused Flags (2),
 PRIORITY Flag (1),
 Unused Flag (1),
 PADDED Flag (1),
 END_HEADERS Flag (1),
 Unused Flag (1),
 END_STREAM Flag (1),

 Reserved (1),
 Stream Identifier (31),

 [Pad Length (8)],
 [Exclusive (1)],
 [Stream Dependency (31)],
 [Weight (8)],
 Field Block Fragment (..),
 Padding (..2040),
 }

 Figure 4: HEADERS Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The HEADERS frame payload has the
 following additional fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is only present if the
 PADDED flag is set.

 Exclusive: A single-bit flag. This field is only present if the
 PRIORITY flag is set. Priority signals in HEADERS frames are
 deprecated; see Section 5.3.2.

 Stream Dependency: A 31-bit stream identifier. This field is only
 present if the PRIORITY flag is set.

 Weight: An unsigned 8-bit integer. This field is only present if
 the PRIORITY flag is set.

 Field Block Fragment: A field block fragment (Section 4.3).

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The HEADERS frame defines the following flags:

 PRIORITY (0x20): When set, the PRIORITY flag indicates that the
 Exclusive, Stream Dependency, and Weight fields are present.

 PADDED (0x08): When set, the PADDED flag indicates that the Pad
 Length field and any padding that it describes are present.

 END_HEADERS (0x04): When set, the END_HEADERS flag indicates that
 this frame contains an entire field block (Section 4.3) and is not
 followed by any CONTINUATION frames.

 A HEADERS frame without the END_HEADERS flag set MUST be followed
 by a CONTINUATION frame for the same stream. A receiver MUST
 treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 END_STREAM (0x01): When set, the END_STREAM flag indicates that the
 field block (Section 4.3) is the last that the endpoint will send
 for the identified stream.

 A HEADERS frame with the END_STREAM flag set signals the end of a
 stream. However, a HEADERS frame with the END_STREAM flag set can
 be followed by CONTINUATION frames on the same stream. Logically,
 the CONTINUATION frames are part of the HEADERS frame.

 The frame payload of a HEADERS frame contains a field block fragment
 (Section 4.3). A field block that does not fit within a HEADERS
 frame is continued in a CONTINUATION frame (Section 6.10).

 HEADERS frames MUST be associated with a stream. If a HEADERS frame
 is received whose Stream Identifier field is 0x00, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 The HEADERS frame changes the connection state as described in
 Section 4.3.

 The total number of padding octets is determined by the value of the
 Pad Length field. If the length of the padding is the length of the
 frame payload or greater, the recipient MUST treat this as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 | Note: A frame can be increased in size by one octet by
 | including a Pad Length field with a value of zero.

6.3. PRIORITY

 The PRIORITY frame (type=0x02) is deprecated; see Section 5.3.2. A
 PRIORITY frame can be sent in any stream state, including idle or
 closed streams.

 PRIORITY Frame {
 Length (24) = 0x05,
 Type (8) = 0x02,

 Unused Flags (8),

 Reserved (1),
 Stream Identifier (31),

 Exclusive (1),
 Stream Dependency (31),
 Weight (8),

 }

 Figure 5: PRIORITY Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The frame payload of a PRIORITY
 frame contains the following additional fields:

 Exclusive: A single-bit flag.

 Stream Dependency: A 31-bit stream identifier.

 Weight: An unsigned 8-bit integer.

 The PRIORITY frame does not define any flags.

 The PRIORITY frame always identifies a stream. If a PRIORITY frame
 is received with a stream identifier of 0x00, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Sending or receiving a PRIORITY frame does not affect the state of
 any stream (Section 5.1). The PRIORITY frame can be sent on a stream
 in any state, including "idle" or "closed". A PRIORITY frame cannot
 be sent between consecutive frames that comprise a single field block
 (Section 4.3).

 A PRIORITY frame with a length other than 5 octets MUST be treated as
 a stream error (Section 5.4.2) of type FRAME_SIZE_ERROR.

6.4. RST_STREAM

 The RST_STREAM frame (type=0x03) allows for immediate termination of
 a stream. RST_STREAM is sent to request cancellation of a stream or
 to indicate that an error condition has occurred.

 RST_STREAM Frame {
 Length (24) = 0x04,
 Type (8) = 0x03,

 Unused Flags (8),

 Reserved (1),
 Stream Identifier (31),

 Error Code (32),
 }

 Figure 6: RST_STREAM Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. Additionally, the RST_STREAM
 frame contains a single unsigned, 32-bit integer identifying the
 error code (Section 7). The error code indicates why the stream is
 being terminated.

 The RST_STREAM frame does not define any flags.

 The RST_STREAM frame fully terminates the referenced stream and
 causes it to enter the "closed" state. After receiving a RST_STREAM
 on a stream, the receiver MUST NOT send additional frames for that
 stream, except for PRIORITY. However, after sending the RST_STREAM,
 the sending endpoint MUST be prepared to receive and process
 additional frames sent on the stream that might have been sent by the
 peer prior to the arrival of the RST_STREAM.

 RST_STREAM frames MUST be associated with a stream. If a RST_STREAM
 frame is received with a stream identifier of 0x00, the recipient
 MUST treat this as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 RST_STREAM frames MUST NOT be sent for a stream in the "idle" state.
 If a RST_STREAM frame identifying an idle stream is received, the
 recipient MUST treat this as a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

 A RST_STREAM frame with a length other than 4 octets MUST be treated
 as a connection error (Section 5.4.1) of type FRAME_SIZE_ERROR.

6.5. SETTINGS

 The SETTINGS frame (type=0x04) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior. The SETTINGS frame is also used to acknowledge the
 receipt of those settings. Individually, a configuration parameter
 from a SETTINGS frame is referred to as a "setting".

 Settings are not negotiated; they describe characteristics of the
 sending peer, which are used by the receiving peer. Different values
 for the same setting can be advertised by each peer. For example, a
 client might set a high initial flow-control window, whereas a server
 might set a lower value to conserve resources.

 A SETTINGS frame MUST be sent by both endpoints at the start of a
 connection and MAY be sent at any other time by either endpoint over
 the lifetime of the connection. Implementations MUST support all of
 the settings defined by this specification.

 Each parameter in a SETTINGS frame replaces any existing value for
 that parameter. Settings are processed in the order in which they
 appear, and a receiver of a SETTINGS frame does not need to maintain
 any state other than the current value of each setting. Therefore,
 the value of a SETTINGS parameter is the last value that is seen by a
 receiver.

 SETTINGS frames are acknowledged by the receiving peer. To enable
 this, the SETTINGS frame defines the ACK flag:

 ACK (0x01): When set, the ACK flag indicates that this frame
 acknowledges receipt and application of the peer’s SETTINGS frame.
 When this bit is set, the frame payload of the SETTINGS frame MUST
 be empty. Receipt of a SETTINGS frame with the ACK flag set and a
 length field value other than 0 MUST be treated as a connection
 error (Section 5.4.1) of type FRAME_SIZE_ERROR. For more
 information, see Section 6.5.3 ("Settings Synchronization").

 SETTINGS frames always apply to a connection, never a single stream.
 The stream identifier for a SETTINGS frame MUST be zero (0x00). If
 an endpoint receives a SETTINGS frame whose Stream Identifier field
 is anything other than 0x00, the endpoint MUST respond with a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 A SETTINGS frame with a length other than a multiple of 6 octets MUST
 be treated as a connection error (Section 5.4.1) of type
 FRAME_SIZE_ERROR.

6.5.1. SETTINGS Format

 The frame payload of a SETTINGS frame consists of zero or more
 settings, each consisting of an unsigned 16-bit setting identifier
 and an unsigned 32-bit value.

 SETTINGS Frame {
 Length (24),
 Type (8) = 0x04,

 Unused Flags (7),
 ACK Flag (1),

 Reserved (1),
 Stream Identifier (31) = 0,

 Setting (48) ...,
 }

 Setting {
 Identifier (16),
 Value (32),
 }

 Figure 7: SETTINGS Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The frame payload of a SETTINGS
 frame contains any number of Setting fields, each of which consists
 of:

 Identifier: A 16-bit setting identifier; see Section 6.5.2.

 Value: A 32-bit value for the setting.

6.5.2. Defined Settings

 The following settings are defined:

 SETTINGS_HEADER_TABLE_SIZE (0x01): This setting allows the sender to
 inform the remote endpoint of the maximum size of the compression
 table used to decode field blocks, in units of octets. The
 encoder can select any size equal to or less than this value by
 using signaling specific to the compression format inside a field
 block (see [COMPRESSION]). The initial value is 4,096 octets.

 SETTINGS_ENABLE_PUSH (0x02): This setting can be used to enable or
 disable server push. A server MUST NOT send a PUSH_PROMISE frame
 if it receives this parameter set to a value of 0; see
 Section 8.4. A client that has both set this parameter to 0 and
 had it acknowledged MUST treat the receipt of a PUSH_PROMISE frame
 as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The initial value of SETTINGS_ENABLE_PUSH is 1. For a client,
 this value indicates that it is willing to receive PUSH_PROMISE
 frames. For a server, this initial value has no effect, and is
 equivalent to the value 0. Any value other than 0 or 1 MUST be
 treated as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 A server MUST NOT explicitly set this value to 1. A server MAY
 choose to omit this setting when it sends a SETTINGS frame, but if
 a server does include a value, it MUST be 0. A client MUST treat
 receipt of a SETTINGS frame with SETTINGS_ENABLE_PUSH set to 1 as
 a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 SETTINGS_MAX_CONCURRENT_STREAMS (0x03): This setting indicates the
 maximum number of concurrent streams that the sender will allow.
 This limit is directional: it applies to the number of streams
 that the sender permits the receiver to create. Initially, there
 is no limit to this value. It is recommended that this value be
 no smaller than 100, so as to not unnecessarily limit parallelism.

 A value of 0 for SETTINGS_MAX_CONCURRENT_STREAMS SHOULD NOT be
 treated as special by endpoints. A zero value does prevent the
 creation of new streams; however, this can also happen for any
 limit that is exhausted with active streams. Servers SHOULD only
 set a zero value for short durations; if a server does not wish to
 accept requests, closing the connection is more appropriate.

 SETTINGS_INITIAL_WINDOW_SIZE (0x04): This setting indicates the
 sender’s initial window size (in units of octets) for stream-level
 flow control. The initial value is 2^16-1 (65,535) octets.

 This setting affects the window size of all streams (see
 Section 6.9.2).

 Values above the maximum flow-control window size of 2^31-1 MUST
 be treated as a connection error (Section 5.4.1) of type
 FLOW_CONTROL_ERROR.

 SETTINGS_MAX_FRAME_SIZE (0x05): This setting indicates the size of
 the largest frame payload that the sender is willing to receive,
 in units of octets.

 The initial value is 2^14 (16,384) octets. The value advertised
 by an endpoint MUST be between this initial value and the maximum
 allowed frame size (2^24-1 or 16,777,215 octets), inclusive.
 Values outside this range MUST be treated as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 SETTINGS_MAX_HEADER_LIST_SIZE (0x06): This advisory setting informs
 a peer of the maximum field section size that the sender is
 prepared to accept, in units of octets. The value is based on the
 uncompressed size of field lines, including the length of the name
 and value in units of octets plus an overhead of 32 octets for
 each field line.

 For any given request, a lower limit than what is advertised MAY
 be enforced. The initial value of this setting is unlimited.

 An endpoint that receives a SETTINGS frame with any unknown or
 unsupported identifier MUST ignore that setting.

6.5.3. Settings Synchronization

 Most values in SETTINGS benefit from or require an understanding of
 when the peer has received and applied the changed parameter values.
 In order to provide such synchronization timepoints, the recipient of
 a SETTINGS frame in which the ACK flag is not set MUST apply the
 updated settings as soon as possible upon receipt. SETTINGS frames
 are acknowledged in the order in which they are received.

 The values in the SETTINGS frame MUST be processed in the order they
 appear, with no other frame processing between values. Unsupported
 settings MUST be ignored. Once all values have been processed, the
 recipient MUST immediately emit a SETTINGS frame with the ACK flag
 set. Upon receiving a SETTINGS frame with the ACK flag set, the
 sender of the altered settings can rely on the values from the oldest
 unacknowledged SETTINGS frame having been applied.

 If the sender of a SETTINGS frame does not receive an acknowledgment
 within a reasonable amount of time, it MAY issue a connection error
 (Section 5.4.1) of type SETTINGS_TIMEOUT. In setting a timeout, some
 allowance needs to be made for processing delays at the peer; a
 timeout that is solely based on the round-trip time between endpoints
 might result in spurious errors.

6.6. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x05) is used to notify the peer
 endpoint in advance of streams the sender intends to initiate. The
 PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
 stream the endpoint plans to create along with a field section that
 provides additional context for the stream. Section 8.4 contains a
 thorough description of the use of PUSH_PROMISE frames.

 PUSH_PROMISE Frame {
 Length (24),
 Type (8) = 0x05,

 Unused Flags (4),
 PADDED Flag (1),
 END_HEADERS Flag (1),

 Unused Flags (2),

 Reserved (1),
 Stream Identifier (31),

 [Pad Length (8)],
 Reserved (1),
 Promised Stream ID (31),
 Field Block Fragment (..),
 Padding (..2040),
 }

 Figure 8: PUSH_PROMISE Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The PUSH_PROMISE frame payload
 has the following additional fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is only present if the
 PADDED flag is set.

 Promised Stream ID: An unsigned 31-bit integer that identifies the
 stream that is reserved by the PUSH_PROMISE. The promised stream
 identifier MUST be a valid choice for the next stream sent by the
 sender (see "new stream identifier" in Section 5.1.1).

 Field Block Fragment: A field block fragment (Section 4.3)
 containing the request control data and a header section.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The PUSH_PROMISE frame defines the following flags:

 PADDED (0x08): When set, the PADDED flag indicates that the Pad
 Length field and any padding that it describes are present.

 END_HEADERS (0x04): When set, the END_HEADERS flag indicates that
 this frame contains an entire field block (Section 4.3) and is not
 followed by any CONTINUATION frames.

 A PUSH_PROMISE frame without the END_HEADERS flag set MUST be
 followed by a CONTINUATION frame for the same stream. A receiver
 MUST treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 PUSH_PROMISE frames MUST only be sent on a peer-initiated stream that
 is in either the "open" or "half-closed (remote)" state. The stream
 identifier of a PUSH_PROMISE frame indicates the stream it is
 associated with. If the Stream Identifier field specifies the value
 0x00, a recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 Promised streams are not required to be used in the order they are
 promised. The PUSH_PROMISE only reserves stream identifiers for
 later use.

 PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH setting of
 the peer endpoint is set to 0. An endpoint that has set this setting
 and has received acknowledgment MUST treat the receipt of a
 PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Recipients of PUSH_PROMISE frames can choose to reject promised
 streams by returning a RST_STREAM referencing the promised stream
 identifier back to the sender of the PUSH_PROMISE.

 A PUSH_PROMISE frame modifies the connection state in two ways.
 First, the inclusion of a field block (Section 4.3) potentially
 modifies the state maintained for field section compression. Second,
 PUSH_PROMISE also reserves a stream for later use, causing the
 promised stream to enter the "reserved (local)" or "reserved
 (remote)" state. A sender MUST NOT send a PUSH_PROMISE on a stream
 unless that stream is either "open" or "half-closed (remote)"; the
 sender MUST ensure that the promised stream is a valid choice for a
 new stream identifier (Section 5.1.1) (that is, the promised stream
 MUST be in the "idle" state).

 Since PUSH_PROMISE reserves a stream, ignoring a PUSH_PROMISE frame
 causes the stream state to become indeterminate. A receiver MUST
 treat the receipt of a PUSH_PROMISE on a stream that is neither
 "open" nor "half-closed (local)" as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR. However, an endpoint that
 has sent RST_STREAM on the associated stream MUST handle PUSH_PROMISE
 frames that might have been created before the RST_STREAM frame is
 received and processed.

 A receiver MUST treat the receipt of a PUSH_PROMISE that promises an
 illegal stream identifier (Section 5.1.1) as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR. Note that an illegal stream
 identifier is an identifier for a stream that is not currently in the
 "idle" state.

 The total number of padding octets is determined by the value of the
 Pad Length field. If the length of the padding is the length of the
 frame payload or greater, the recipient MUST treat this as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 | Note: A frame can be increased in size by one octet by
 | including a Pad Length field with a value of zero.

6.7. PING

 The PING frame (type=0x06) is a mechanism for measuring a minimal
 round-trip time from the sender, as well as determining whether an
 idle connection is still functional. PING frames can be sent from
 any endpoint.

 PING Frame {
 Length (24) = 0x08,
 Type (8) = 0x06,

 Unused Flags (7),
 ACK Flag (1),

 Reserved (1),
 Stream Identifier (31) = 0,

 Opaque Data (64),
 }

 Figure 9: PING Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4.

 In addition to the frame header, PING frames MUST contain 8 octets of
 opaque data in the frame payload. A sender can include any value it
 chooses and use those octets in any fashion.

 Receivers of a PING frame that does not include an ACK flag MUST send
 a PING frame with the ACK flag set in response, with an identical
 frame payload. PING responses SHOULD be given higher priority than
 any other frame.

 The PING frame defines the following flags:

 ACK (0x01): When set, the ACK flag indicates that this PING frame is

 a PING response. An endpoint MUST set this flag in PING
 responses. An endpoint MUST NOT respond to PING frames containing
 this flag.

 PING frames are not associated with any individual stream. If a PING
 frame is received with a Stream Identifier field value other than
 0x00, the recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 Receipt of a PING frame with a length field value other than 8 MUST
 be treated as a connection error (Section 5.4.1) of type
 FRAME_SIZE_ERROR.

6.8. GOAWAY

 The GOAWAY frame (type=0x07) is used to initiate shutdown of a
 connection or to signal serious error conditions. GOAWAY allows an
 endpoint to gracefully stop accepting new streams while still
 finishing processing of previously established streams. This enables
 administrative actions, like server maintenance.

 There is an inherent race condition between an endpoint starting new
 streams and the remote peer sending a GOAWAY frame. To deal with
 this case, the GOAWAY contains the stream identifier of the last
 peer-initiated stream that was or might be processed on the sending
 endpoint in this connection. For instance, if the server sends a
 GOAWAY frame, the identified stream is the highest-numbered stream
 initiated by the client.

 Once the GOAWAY is sent, the sender will ignore frames sent on
 streams initiated by the receiver if the stream has an identifier
 higher than the included last stream identifier. Receivers of a
 GOAWAY frame MUST NOT open additional streams on the connection,
 although a new connection can be established for new streams.

 If the receiver of the GOAWAY has sent data on streams with a higher
 stream identifier than what is indicated in the GOAWAY frame, those
 streams are not or will not be processed. The receiver of the GOAWAY
 frame can treat the streams as though they had never been created at
 all, thereby allowing those streams to be retried later on a new
 connection.

 Endpoints SHOULD always send a GOAWAY frame before closing a
 connection so that the remote peer can know whether a stream has been
 partially processed or not. For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the
 server does not send a GOAWAY frame to indicate what streams it might
 have acted on.

 An endpoint might choose to close a connection without sending a
 GOAWAY for misbehaving peers.

 A GOAWAY frame might not immediately precede closing of the
 connection; a receiver of a GOAWAY that has no more use for the
 connection SHOULD still send a GOAWAY frame before terminating the
 connection.

 GOAWAY Frame {
 Length (24),
 Type (8) = 0x07,

 Unused Flags (8),

 Reserved (1),
 Stream Identifier (31) = 0,

 Reserved (1),
 Last-Stream-ID (31),
 Error Code (32),
 Additional Debug Data (..),

 }

 Figure 10: GOAWAY Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4.

 The GOAWAY frame does not define any flags.

 The GOAWAY frame applies to the connection, not a specific stream.
 An endpoint MUST treat a GOAWAY frame with a stream identifier other
 than 0x00 as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 The last stream identifier in the GOAWAY frame contains the highest-
 numbered stream identifier for which the sender of the GOAWAY frame
 might have taken some action on or might yet take action on. All
 streams up to and including the identified stream might have been
 processed in some way. The last stream identifier can be set to 0 if
 no streams were processed.

 | Note: In this context, "processed" means that some data from
 | the stream was passed to some higher layer of software that
 | might have taken some action as a result.

 If a connection terminates without a GOAWAY frame, the last stream
 identifier is effectively the highest possible stream identifier.

 On streams with lower- or equal-numbered identifiers that were not
 closed completely prior to the connection being closed, reattempting
 requests, transactions, or any protocol activity is not possible,
 except for idempotent actions like HTTP GET, PUT, or DELETE. Any
 protocol activity that uses higher-numbered streams can be safely
 retried using a new connection.

 Activity on streams numbered lower than or equal to the last stream
 identifier might still complete successfully. The sender of a GOAWAY
 frame might gracefully shut down a connection by sending a GOAWAY
 frame, maintaining the connection in an "open" state until all in-
 progress streams complete.

 An endpoint MAY send multiple GOAWAY frames if circumstances change.
 For instance, an endpoint that sends GOAWAY with NO_ERROR during
 graceful shutdown could subsequently encounter a condition that
 requires immediate termination of the connection. The last stream
 identifier from the last GOAWAY frame received indicates which
 streams could have been acted upon. Endpoints MUST NOT increase the
 value they send in the last stream identifier, since the peers might
 already have retried unprocessed requests on another connection.

 A client that is unable to retry requests loses all requests that are
 in flight when the server closes the connection. This is especially
 true for intermediaries that might not be serving clients using
 HTTP/2. A server that is attempting to gracefully shut down a
 connection SHOULD send an initial GOAWAY frame with the last stream
 identifier set to 2^31-1 and a NO_ERROR code. This signals to the
 client that a shutdown is imminent and that initiating further
 requests is prohibited. After allowing time for any in-flight stream
 creation (at least one round-trip time), the server MAY send another
 GOAWAY frame with an updated last stream identifier. This ensures
 that a connection can be cleanly shut down without losing requests.

 After sending a GOAWAY frame, the sender can discard frames for
 streams initiated by the receiver with identifiers higher than the
 identified last stream. However, any frames that alter connection
 state cannot be completely ignored. For instance, HEADERS,
 PUSH_PROMISE, and CONTINUATION frames MUST be minimally processed to
 ensure that the state maintained for field section compression is
 consistent (see Section 4.3); similarly, DATA frames MUST be counted
 toward the connection flow-control window. Failure to process these
 frames can cause flow control or field section compression state to

 become unsynchronized.

 The GOAWAY frame also contains a 32-bit error code (Section 7) that
 contains the reason for closing the connection.

 Endpoints MAY append opaque data to the frame payload of any GOAWAY
 frame. Additional debug data is intended for diagnostic purposes
 only and carries no semantic value. Debug information could contain
 security- or privacy-sensitive data. Logged or otherwise
 persistently stored debug data MUST have adequate safeguards to
 prevent unauthorized access.

6.9. WINDOW_UPDATE

 The WINDOW_UPDATE frame (type=0x08) is used to implement flow
 control; see Section 5.2 for an overview.

 Flow control operates at two levels: on each individual stream and on
 the entire connection.

 Both types of flow control are hop by hop, that is, only between the
 two endpoints. Intermediaries do not forward WINDOW_UPDATE frames
 between dependent connections. However, throttling of data transfer
 by any receiver can indirectly cause the propagation of flow-control
 information toward the original sender.

 Flow control only applies to frames that are identified as being
 subject to flow control. Of the frame types defined in this
 document, this includes only DATA frames. Frames that are exempt
 from flow control MUST be accepted and processed, unless the receiver
 is unable to assign resources to handling the frame. A receiver MAY
 respond with a stream error (Section 5.4.2) or connection error
 (Section 5.4.1) of type FLOW_CONTROL_ERROR if it is unable to accept
 a frame.

 WINDOW_UPDATE Frame {
 Length (24) = 0x04,
 Type (8) = 0x08,

 Unused Flags (8),

 Reserved (1),
 Stream Identifier (31),

 Reserved (1),
 Window Size Increment (31),
 }

 Figure 11: WINDOW_UPDATE Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The frame payload of a
 WINDOW_UPDATE frame is one reserved bit plus an unsigned 31-bit
 integer indicating the number of octets that the sender can transmit
 in addition to the existing flow-control window. The legal range for
 the increment to the flow-control window is 1 to 2^31-1
 (2,147,483,647) octets.

 The WINDOW_UPDATE frame does not define any flags.

 The WINDOW_UPDATE frame can be specific to a stream or to the entire
 connection. In the former case, the frame’s stream identifier
 indicates the affected stream; in the latter, the value "0" indicates
 that the entire connection is the subject of the frame.

 A receiver MUST treat the receipt of a WINDOW_UPDATE frame with a
 flow-control window increment of 0 as a stream error (Section 5.4.2)
 of type PROTOCOL_ERROR; errors on the connection flow-control window
 MUST be treated as a connection error (Section 5.4.1).

 WINDOW_UPDATE can be sent by a peer that has sent a frame with the

 END_STREAM flag set. This means that a receiver could receive a
 WINDOW_UPDATE frame on a stream in a "half-closed (remote)" or
 "closed" state. A receiver MUST NOT treat this as an error (see
 Section 5.1).

 A receiver that receives a flow-controlled frame MUST always account
 for its contribution against the connection flow-control window,
 unless the receiver treats this as a connection error
 (Section 5.4.1). This is necessary even if the frame is in error.
 The sender counts the frame toward the flow-control window, but if
 the receiver does not, the flow-control window at the sender and
 receiver can become different.

 A WINDOW_UPDATE frame with a length other than 4 octets MUST be
 treated as a connection error (Section 5.4.1) of type
 FRAME_SIZE_ERROR.

6.9.1. The Flow-Control Window

 Flow control in HTTP/2 is implemented using a window kept by each
 sender on every stream. The flow-control window is a simple integer
 value that indicates how many octets of data the sender is permitted
 to transmit; as such, its size is a measure of the buffering capacity
 of the receiver.

 Two flow-control windows are applicable: the stream flow-control
 window and the connection flow-control window. The sender MUST NOT
 send a flow-controlled frame with a length that exceeds the space
 available in either of the flow-control windows advertised by the
 receiver. Frames with zero length with the END_STREAM flag set (that
 is, an empty DATA frame) MAY be sent if there is no available space
 in either flow-control window.

 For flow-control calculations, the 9-octet frame header is not
 counted.

 After sending a flow-controlled frame, the sender reduces the space
 available in both windows by the length of the transmitted frame.

 The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
 data and frees up space in flow-control windows. Separate
 WINDOW_UPDATE frames are sent for the stream- and connection-level
 flow-control windows. Receivers are advised to have mechanisms in
 place to avoid sending WINDOW_UPDATE frames with very small
 increments; see Section 4.2.3.3 of [RFC1122].

 A sender that receives a WINDOW_UPDATE frame updates the
 corresponding window by the amount specified in the frame.

 A sender MUST NOT allow a flow-control window to exceed 2^31-1
 octets. If a sender receives a WINDOW_UPDATE that causes a flow-
 control window to exceed this maximum, it MUST terminate either the
 stream or the connection, as appropriate. For streams, the sender
 sends a RST_STREAM with an error code of FLOW_CONTROL_ERROR; for the
 connection, a GOAWAY frame with an error code of FLOW_CONTROL_ERROR
 is sent.

 Flow-controlled frames from the sender and WINDOW_UPDATE frames from
 the receiver are completely asynchronous with respect to each other.
 This property allows a receiver to aggressively update the window
 size kept by the sender to prevent streams from stalling.

6.9.2. Initial Flow-Control Window Size

 When an HTTP/2 connection is first established, new streams are
 created with an initial flow-control window size of 65,535 octets.
 The connection flow-control window is also 65,535 octets. Both
 endpoints can adjust the initial window size for new streams by
 including a value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS
 frame. The connection flow-control window can only be changed using
 WINDOW_UPDATE frames.

 Prior to receiving a SETTINGS frame that sets a value for
 SETTINGS_INITIAL_WINDOW_SIZE, an endpoint can only use the default
 initial window size when sending flow-controlled frames. Similarly,
 the connection flow-control window is set based on the default
 initial window size until a WINDOW_UPDATE frame is received.

 In addition to changing the flow-control window for streams that are
 not yet active, a SETTINGS frame can alter the initial flow-control
 window size for streams with active flow-control windows (that is,
 streams in the "open" or "half-closed (remote)" state). When the
 value of SETTINGS_INITIAL_WINDOW_SIZE changes, a receiver MUST adjust
 the size of all stream flow-control windows that it maintains by the
 difference between the new value and the old value.

 A change to SETTINGS_INITIAL_WINDOW_SIZE can cause the available
 space in a flow-control window to become negative. A sender MUST
 track the negative flow-control window and MUST NOT send new flow-
 controlled frames until it receives WINDOW_UPDATE frames that cause
 the flow-control window to become positive.

 For example, if the client sends 60 KB immediately on connection
 establishment and the server sets the initial window size to be 16
 KB, the client will recalculate the available flow-control window to
 be -44 KB on receipt of the SETTINGS frame. The client retains a
 negative flow-control window until WINDOW_UPDATE frames restore the
 window to being positive, after which the client can resume sending.

 A SETTINGS frame cannot alter the connection flow-control window.

 An endpoint MUST treat a change to SETTINGS_INITIAL_WINDOW_SIZE that
 causes any flow-control window to exceed the maximum size as a
 connection error (Section 5.4.1) of type FLOW_CONTROL_ERROR.

6.9.3. Reducing the Stream Window Size

 A receiver that wishes to use a smaller flow-control window than the
 current size can send a new SETTINGS frame. However, the receiver
 MUST be prepared to receive data that exceeds this window size, since
 the sender might send data that exceeds the lower limit prior to
 processing the SETTINGS frame.

 After sending a SETTINGS frame that reduces the initial flow-control
 window size, a receiver MAY continue to process streams that exceed
 flow-control limits. Allowing streams to continue does not allow the
 receiver to immediately reduce the space it reserves for flow-control
 windows. Progress on these streams can also stall, since
 WINDOW_UPDATE frames are needed to allow the sender to resume
 sending. The receiver MAY instead send a RST_STREAM with an error
 code of FLOW_CONTROL_ERROR for the affected streams.

6.10. CONTINUATION

 The CONTINUATION frame (type=0x09) is used to continue a sequence of
 field block fragments (Section 4.3). Any number of CONTINUATION
 frames can be sent, as long as the preceding frame is on the same
 stream and is a HEADERS, PUSH_PROMISE, or CONTINUATION frame without
 the END_HEADERS flag set.

 CONTINUATION Frame {
 Length (24),
 Type (8) = 0x09,

 Unused Flags (5),
 END_HEADERS Flag (1),
 Unused Flags (2),

 Reserved (1),
 Stream Identifier (31),

 Field Block Fragment (..),

 }

 Figure 12: CONTINUATION Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4. The CONTINUATION frame payload
 contains a field block fragment (Section 4.3).

 The CONTINUATION frame defines the following flag:

 END_HEADERS (0x04): When set, the END_HEADERS flag indicates that
 this frame ends a field block (Section 4.3).

 If the END_HEADERS flag is not set, this frame MUST be followed by
 another CONTINUATION frame. A receiver MUST treat the receipt of
 any other type of frame or a frame on a different stream as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The CONTINUATION frame changes the connection state as defined in
 Section 4.3.

 CONTINUATION frames MUST be associated with a stream. If a
 CONTINUATION frame is received with a Stream Identifier field of
 0x00, the recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 A CONTINUATION frame MUST be preceded by a HEADERS, PUSH_PROMISE or
 CONTINUATION frame without the END_HEADERS flag set. A recipient
 that observes violation of this rule MUST respond with a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

7. Error Codes

 Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
 frames to convey the reasons for the stream or connection error.

 Error codes share a common code space. Some error codes apply only
 to either streams or the entire connection and have no defined
 semantics in the other context.

 The following error codes are defined:

 NO_ERROR (0x00): The associated condition is not a result of an
 error. For example, a GOAWAY might include this code to indicate
 graceful shutdown of a connection.

 PROTOCOL_ERROR (0x01): The endpoint detected an unspecific protocol
 error. This error is for use when a more specific error code is
 not available.

 INTERNAL_ERROR (0x02): The endpoint encountered an unexpected
 internal error.

 FLOW_CONTROL_ERROR (0x03): The endpoint detected that its peer
 violated the flow-control protocol.

 SETTINGS_TIMEOUT (0x04): The endpoint sent a SETTINGS frame but did
 not receive a response in a timely manner. See Section 6.5.3
 ("Settings Synchronization").

 STREAM_CLOSED (0x05): The endpoint received a frame after a stream
 was half-closed.

 FRAME_SIZE_ERROR (0x06): The endpoint received a frame with an
 invalid size.

 REFUSED_STREAM (0x07): The endpoint refused the stream prior to
 performing any application processing (see Section 8.7 for
 details).

 CANCEL (0x08): The endpoint uses this error code to indicate that

 the stream is no longer needed.

 COMPRESSION_ERROR (0x09): The endpoint is unable to maintain the
 field section compression context for the connection.

 CONNECT_ERROR (0x0a): The connection established in response to a
 CONNECT request (Section 8.5) was reset or abnormally closed.

 ENHANCE_YOUR_CALM (0x0b): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 INADEQUATE_SECURITY (0x0c): The underlying transport has properties
 that do not meet minimum security requirements (see Section 9.2).

 HTTP_1_1_REQUIRED (0x0d): The endpoint requires that HTTP/1.1 be
 used instead of HTTP/2.

 Unknown or unsupported error codes MUST NOT trigger any special
 behavior. These MAY be treated by an implementation as being
 equivalent to INTERNAL_ERROR.

8. Expressing HTTP Semantics in HTTP/2

 HTTP/2 is an instantiation of the HTTP message abstraction (Section 6
 of [HTTP]).

8.1. HTTP Message Framing

 A client sends an HTTP request on a new stream, using a previously
 unused stream identifier (Section 5.1.1). A server sends an HTTP
 response on the same stream as the request.

 An HTTP message (request or response) consists of:

 1. one HEADERS frame (followed by zero or more CONTINUATION frames)
 containing the header section (see Section 6.3 of [HTTP]),

 2. zero or more DATA frames containing the message content (see
 Section 6.4 of [HTTP]), and

 3. optionally, one HEADERS frame (followed by zero or more
 CONTINUATION frames) containing the trailer section, if present
 (see Section 6.5 of [HTTP]).

 For a response only, a server MAY send any number of interim
 responses before the HEADERS frame containing a final response. An
 interim response consists of a HEADERS frame (which might be followed
 by zero or more CONTINUATION frames) containing the control data and
 header section of an interim (1xx) HTTP response (see Section 15 of
 [HTTP]). A HEADERS frame with the END_STREAM flag set that carries
 an informational status code is malformed (Section 8.1.1).

 The last frame in the sequence bears an END_STREAM flag, noting that
 a HEADERS frame with the END_STREAM flag set can be followed by
 CONTINUATION frames that carry any remaining fragments of the field
 block.

 Other frames (from any stream) MUST NOT occur between the HEADERS
 frame and any CONTINUATION frames that might follow.

 HTTP/2 uses DATA frames to carry message content. The chunked
 transfer encoding defined in Section 7.1 of [HTTP/1.1] cannot be used
 in HTTP/2; see Section 8.2.2.

 Trailer fields are carried in a field block that also terminates the
 stream. That is, trailer fields comprise a sequence starting with a
 HEADERS frame, followed by zero or more CONTINUATION frames, where
 the HEADERS frame bears an END_STREAM flag. Trailers MUST NOT
 include pseudo-header fields (Section 8.3). An endpoint that
 receives pseudo-header fields in trailers MUST treat the request or
 response as malformed (Section 8.1.1).

 An endpoint that receives a HEADERS frame without the END_STREAM flag
 set after receiving the HEADERS frame that opens a request or after
 receiving a final (non-informational) status code MUST treat the
 corresponding request or response as malformed (Section 8.1.1).

 An HTTP request/response exchange fully consumes a single stream. A
 request starts with the HEADERS frame that puts the stream into the
 "open" state. The request ends with a frame with the END_STREAM flag
 set, which causes the stream to become "half-closed (local)" for the
 client and "half-closed (remote)" for the server. A response stream
 starts with zero or more interim responses in HEADERS frames,
 followed by a HEADERS frame containing a final status code.

 An HTTP response is complete after the server sends -- or the client
 receives -- a frame with the END_STREAM flag set (including any
 CONTINUATION frames needed to complete a field block). A server can
 send a complete response prior to the client sending an entire
 request if the response does not depend on any portion of the request
 that has not been sent and received. When this is true, a server MAY
 request that the client abort transmission of a request without error
 by sending a RST_STREAM with an error code of NO_ERROR after sending
 a complete response (i.e., a frame with the END_STREAM flag set).
 Clients MUST NOT discard responses as a result of receiving such a
 RST_STREAM, though clients can always discard responses at their
 discretion for other reasons.

8.1.1. Malformed Messages

 A malformed request or response is one that is an otherwise valid
 sequence of HTTP/2 frames but is invalid due to the presence of
 extraneous frames, prohibited fields or pseudo-header fields, the
 absence of mandatory pseudo-header fields, the inclusion of uppercase
 field names, or invalid field names and/or values (in certain
 circumstances; see Section 8.2).

 A request or response that includes message content can include a
 content-length header field. A request or response is also malformed
 if the value of a content-length header field does not equal the sum
 of the DATA frame payload lengths that form the content, unless the
 message is defined as having no content. For example, 204 or 304
 responses contain no content, as does the response to a HEAD request.
 A response that is defined to have no content, as described in
 Section 6.4.1 of [HTTP], MAY have a non-zero content-length header
 field, even though no content is included in DATA frames.

 Intermediaries that process HTTP requests or responses (i.e., any
 intermediary not acting as a tunnel) MUST NOT forward a malformed
 request or response. Malformed requests or responses that are
 detected MUST be treated as a stream error (Section 5.4.2) of type
 PROTOCOL_ERROR.

 For malformed requests, a server MAY send an HTTP response prior to
 closing or resetting the stream. Clients MUST NOT accept a malformed
 response.

 Endpoints that progressively process messages might have performed
 some processing before identifying a request or response as
 malformed. For instance, it might be possible to generate an
 informational or 404 status code without having received a complete
 request. Similarly, intermediaries might forward incomplete messages
 before detecting errors. A server MAY generate a final response
 before receiving an entire request when the response does not depend
 on the remainder of the request being correct.

 These requirements are intended to protect against several types of
 common attacks against HTTP; they are deliberately strict because
 being permissive can expose implementations to these vulnerabilities.

8.2. HTTP Fields

 HTTP fields (Section 5 of [HTTP]) are conveyed by HTTP/2 in the
 HEADERS, CONTINUATION, and PUSH_PROMISE frames, compressed with HPACK
 [COMPRESSION].

 Field names MUST be converted to lowercase when constructing an
 HTTP/2 message.

8.2.1. Field Validity

 The definitions of field names and values in HTTP prohibit some
 characters that HPACK might be able to convey. HTTP/2
 implementations SHOULD validate field names and values according to
 their definitions in Sections 5.1 and 5.5 of [HTTP], respectively,
 and treat messages that contain prohibited characters as malformed
 (Section 8.1.1).

 Failure to validate fields can be exploited for request smuggling
 attacks. In particular, unvalidated fields might enable attacks when
 messages are forwarded using HTTP/1.1 [HTTP/1.1], where characters
 such as carriage return (CR), line feed (LF), and COLON are used as
 delimiters. Implementations MUST perform the following minimal
 validation of field names and values:

 * A field name MUST NOT contain characters in the ranges 0x00-0x20,
 0x41-0x5a, or 0x7f-0xff (all ranges inclusive). This specifically
 excludes all non-visible ASCII characters, ASCII SP (0x20), and
 uppercase characters (’A’ to ’Z’, ASCII 0x41 to 0x5a).

 * With the exception of pseudo-header fields (Section 8.3), which
 have a name that starts with a single colon, field names MUST NOT
 include a colon (ASCII COLON, 0x3a).

 * A field value MUST NOT contain the zero value (ASCII NUL, 0x00),
 line feed (ASCII LF, 0x0a), or carriage return (ASCII CR, 0x0d) at
 any position.

 * A field value MUST NOT start or end with an ASCII whitespace
 character (ASCII SP or HTAB, 0x20 or 0x09).

 | Note: An implementation that validates fields according to the
 | definitions in Sections 5.1 and 5.5 of [HTTP] only needs an
 | additional check that field names do not include uppercase
 | characters.

 A request or response that contains a field that violates any of
 these conditions MUST be treated as malformed (Section 8.1.1). In
 particular, an intermediary that does not process fields when
 forwarding messages MUST NOT forward fields that contain any of the
 values that are listed as prohibited above.

 When a request message violates one of these requirements, an
 implementation SHOULD generate a 400 (Bad Request) status code (see
 Section 15.5.1 of [HTTP]), unless a more suitable status code is
 defined or the status code cannot be sent (e.g., because the error
 occurs in a trailer field).

 | Note: Field values that are not valid according to the
 | definition of the corresponding field do not cause a request to
 | be malformed; the requirements above only apply to the generic
 | syntax for fields as defined in Section 5 of [HTTP].

8.2.2. Connection-Specific Header Fields

 HTTP/2 does not use the Connection header field (Section 7.6.1 of
 [HTTP]) to indicate connection-specific header fields; in this
 protocol, connection-specific metadata is conveyed by other means.
 An endpoint MUST NOT generate an HTTP/2 message containing
 connection-specific header fields. This includes the Connection
 header field and those listed as having connection-specific semantics
 in Section 7.6.1 of [HTTP] (that is, Proxy-Connection, Keep-Alive,
 Transfer-Encoding, and Upgrade). Any message containing connection-

 specific header fields MUST be treated as malformed (Section 8.1.1).

 The only exception to this is the TE header field, which MAY be
 present in an HTTP/2 request; when it is, it MUST NOT contain any
 value other than "trailers".

 An intermediary transforming an HTTP/1.x message to HTTP/2 MUST
 remove connection-specific header fields as discussed in
 Section 7.6.1 of [HTTP], or their messages will be treated by other
 HTTP/2 endpoints as malformed (Section 8.1.1).

 | Note: HTTP/2 purposefully does not support upgrade to another
 | protocol. The handshake methods described in Section 3 are
 | believed sufficient to negotiate the use of alternative
 | protocols.

8.2.3. Compressing the Cookie Header Field

 The Cookie header field [COOKIE] uses a semicolon (";") to delimit
 cookie-pairs (or "crumbs"). This header field contains multiple
 values, but does not use a COMMA (",") as a separator, thereby
 preventing cookie-pairs from being sent on multiple field lines (see
 Section 5.2 of [HTTP]). This can significantly reduce compression
 efficiency, as updates to individual cookie-pairs would invalidate
 any field lines that are stored in the HPACK table.

 To allow for better compression efficiency, the Cookie header field
 MAY be split into separate header fields, each with one or more
 cookie-pairs. If there are multiple Cookie header fields after
 decompression, these MUST be concatenated into a single octet string
 using the two-octet delimiter of 0x3b, 0x20 (the ASCII string "; ")
 before being passed into a non-HTTP/2 context, such as an HTTP/1.1
 connection, or a generic HTTP server application.

 Therefore, the following two lists of Cookie header fields are
 semantically equivalent.

 cookie: a=b; c=d; e=f

 cookie: a=b
 cookie: c=d
 cookie: e=f

8.3. HTTP Control Data

 HTTP/2 uses special pseudo-header fields beginning with a ’:’
 character (ASCII 0x3a) to convey message control data (see
 Section 6.2 of [HTTP]).

 Pseudo-header fields are not HTTP header fields. Endpoints MUST NOT
 generate pseudo-header fields other than those defined in this
 document. Note that an extension could negotiate the use of
 additional pseudo-header fields; see Section 5.5.

 Pseudo-header fields are only valid in the context in which they are
 defined. Pseudo-header fields defined for requests MUST NOT appear
 in responses; pseudo-header fields defined for responses MUST NOT
 appear in requests. Pseudo-header fields MUST NOT appear in a
 trailer section. Endpoints MUST treat a request or response that
 contains undefined or invalid pseudo-header fields as malformed
 (Section 8.1.1).

 All pseudo-header fields MUST appear in a field block before all
 regular field lines. Any request or response that contains a pseudo-
 header field that appears in a field block after a regular field line
 MUST be treated as malformed (Section 8.1.1).

 The same pseudo-header field name MUST NOT appear more than once in a
 field block. A field block for an HTTP request or response that
 contains a repeated pseudo-header field name MUST be treated as
 malformed (Section 8.1.1).

8.3.1. Request Pseudo-Header Fields

 The following pseudo-header fields are defined for HTTP/2 requests:

 * The ":method" pseudo-header field includes the HTTP method
 (Section 9 of [HTTP]).

 * The ":scheme" pseudo-header field includes the scheme portion of
 the request target. The scheme is taken from the target URI
 (Section 3.1 of [RFC3986]) when generating a request directly, or
 from the scheme of a translated request (for example, see
 Section 3.3 of [HTTP/1.1]). Scheme is omitted for CONNECT
 requests (Section 8.5).

 ":scheme" is not restricted to "http" and "https" schemed URIs. A
 proxy or gateway can translate requests for non-HTTP schemes,
 enabling the use of HTTP to interact with non-HTTP services.

 * The ":authority" pseudo-header field conveys the authority portion
 (Section 3.2 of [RFC3986]) of the target URI (Section 7.1 of
 [HTTP]). The recipient of an HTTP/2 request MUST NOT use the Host
 header field to determine the target URI if ":authority" is
 present.

 Clients that generate HTTP/2 requests directly MUST use the
 ":authority" pseudo-header field to convey authority information,
 unless there is no authority information to convey (in which case
 it MUST NOT generate ":authority").

 Clients MUST NOT generate a request with a Host header field that
 differs from the ":authority" pseudo-header field. A server
 SHOULD treat a request as malformed if it contains a Host header
 field that identifies an entity that differs from the entity in
 the ":authority" pseudo-header field. The values of fields need
 to be normalized to compare them (see Section 6.2 of [RFC3986]).
 An origin server can apply any normalization method, whereas other
 servers MUST perform scheme-based normalization (see Section 6.2.3
 of [RFC3986]) of the two fields.

 An intermediary that forwards a request over HTTP/2 MUST construct
 an ":authority" pseudo-header field using the authority
 information from the control data of the original request, unless
 the original request’s target URI does not contain authority
 information (in which case it MUST NOT generate ":authority").
 Note that the Host header field is not the sole source of this
 information; see Section 7.2 of [HTTP].

 An intermediary that needs to generate a Host header field (which
 might be necessary to construct an HTTP/1.1 request) MUST use the
 value from the ":authority" pseudo-header field as the value of
 the Host field, unless the intermediary also changes the request
 target. This replaces any existing Host field to avoid potential
 vulnerabilities in HTTP routing.

 An intermediary that forwards a request over HTTP/2 MAY retain any
 Host header field.

 Note that request targets for CONNECT or asterisk-form OPTIONS
 requests never include authority information; see Sections 7.1 and
 7.2 of [HTTP].

 ":authority" MUST NOT include the deprecated userinfo subcomponent
 for "http" or "https" schemed URIs.

 * The ":path" pseudo-header field includes the path and query parts
 of the target URI (the absolute-path production and, optionally, a
 ’?’ character followed by the query production; see Section 4.1 of
 [HTTP]). A request in asterisk form (for OPTIONS) includes the
 value ’*’ for the ":path" pseudo-header field.

 This pseudo-header field MUST NOT be empty for "http" or "https"
 URIs; "http" or "https" URIs that do not contain a path component
 MUST include a value of ’/’. The exceptions to this rule are:

 - an OPTIONS request for an "http" or "https" URI that does not
 include a path component; these MUST include a ":path" pseudo-
 header field with a value of ’*’ (see Section 7.1 of [HTTP]).

 - CONNECT requests (Section 8.5), where the ":path" pseudo-header
 field is omitted.

 All HTTP/2 requests MUST include exactly one valid value for the
 ":method", ":scheme", and ":path" pseudo-header fields, unless they
 are CONNECT requests (Section 8.5). An HTTP request that omits
 mandatory pseudo-header fields is malformed (Section 8.1.1).

 Individual HTTP/2 requests do not carry an explicit indicator of
 protocol version. All HTTP/2 requests implicitly have a protocol
 version of "2.0" (see Section 6.2 of [HTTP]).

8.3.2. Response Pseudo-Header Fields

 For HTTP/2 responses, a single ":status" pseudo-header field is
 defined that carries the HTTP status code field (see Section 15 of
 [HTTP]). This pseudo-header field MUST be included in all responses,
 including interim responses; otherwise, the response is malformed
 (Section 8.1.1).

 HTTP/2 responses implicitly have a protocol version of "2.0".

8.4. Server Push

 HTTP/2 allows a server to preemptively send (or "push") responses
 (along with corresponding "promised" requests) to a client in
 association with a previous client-initiated request.

 Server push was designed to allow a server to improve client-
 perceived performance by predicting what requests will follow those
 that it receives, thereby removing a round trip for them. For
 example, a request for HTML is often followed by requests for
 stylesheets and scripts referenced by that page. When these requests
 are pushed, the client does not need to wait to receive the
 references to them in the HTML and issue separate requests.

 In practice, server push is difficult to use effectively, because it
 requires the server to correctly anticipate the additional requests
 the client will make, taking into account factors such as caching,
 content negotiation, and user behavior. Errors in prediction can
 lead to performance degradation, due to the opportunity cost that the
 additional data on the wire represents. In particular, pushing any
 significant amount of data can cause contention issues with responses
 that are more important.

 A client can request that server push be disabled, though this is
 negotiated for each hop independently. The SETTINGS_ENABLE_PUSH
 setting can be set to 0 to indicate that server push is disabled.

 Promised requests MUST be safe (see Section 9.2.1 of [HTTP]) and
 cacheable (see Section 9.2.3 of [HTTP]). Promised requests cannot
 include any content or a trailer section. Clients that receive a
 promised request that is not cacheable, that is not known to be safe,
 or that indicates the presence of request content MUST reset the
 promised stream with a stream error (Section 5.4.2) of type
 PROTOCOL_ERROR. Note that this could result in the promised stream
 being reset if the client does not recognize a newly defined method
 as being safe.

 Pushed responses that are cacheable (see Section 3 of [CACHING]) can
 be stored by the client, if it implements an HTTP cache. Pushed
 responses are considered successfully validated on the origin server
 (e.g., if the "no-cache" cache response directive is present; see

 Section 5.2.2.4 of [CACHING]) while the stream identified by the
 promised stream identifier is still open.

 Pushed responses that are not cacheable MUST NOT be stored by any
 HTTP cache. They MAY be made available to the application
 separately.

 The server MUST include a value in the ":authority" pseudo-header
 field for which the server is authoritative (see Section 10.1). A
 client MUST treat a PUSH_PROMISE for which the server is not
 authoritative as a stream error (Section 5.4.2) of type
 PROTOCOL_ERROR.

 An intermediary can receive pushes from the server and choose not to
 forward them on to the client. In other words, how to make use of
 the pushed information is up to that intermediary. Equally, the
 intermediary might choose to make additional pushes to the client,
 without any action taken by the server.

 A client cannot push. Thus, servers MUST treat the receipt of a
 PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR. A server cannot set the SETTINGS_ENABLE_PUSH setting
 to a value other than 0 (see Section 6.5.2).

8.4.1. Push Requests

 Server push is semantically equivalent to a server responding to a
 request; however, in this case, that request is also sent by the
 server, as a PUSH_PROMISE frame.

 The PUSH_PROMISE frame includes a field block that contains control
 data and a complete set of request header fields that the server
 attributes to the request. It is not possible to push a response to
 a request that includes message content.

 Promised requests are always associated with an explicit request from
 the client. The PUSH_PROMISE frames sent by the server are sent on
 that explicit request’s stream. The PUSH_PROMISE frame also includes
 a promised stream identifier, chosen from the stream identifiers
 available to the server (see Section 5.1.1).

 The header fields in PUSH_PROMISE and any subsequent CONTINUATION
 frames MUST be a valid and complete set of request header fields
 (Section 8.3.1). The server MUST include a method in the ":method"
 pseudo-header field that is safe and cacheable. If a client receives
 a PUSH_PROMISE that does not include a complete and valid set of
 header fields or the ":method" pseudo-header field identifies a
 method that is not safe, it MUST respond on the promised stream with
 a stream error (Section 5.4.2) of type PROTOCOL_ERROR.

 The server SHOULD send PUSH_PROMISE (Section 6.6) frames prior to
 sending any frames that reference the promised responses. This
 avoids a race where clients issue requests prior to receiving any
 PUSH_PROMISE frames.

 For example, if the server receives a request for a document
 containing embedded links to multiple image files and the server
 chooses to push those additional images to the client, sending
 PUSH_PROMISE frames before the DATA frames that contain the image
 links ensures that the client is able to see that a resource will be
 pushed before discovering embedded links. Similarly, if the server
 pushes resources referenced by the field block (for instance, in Link
 header fields), sending a PUSH_PROMISE before sending the header
 ensures that clients do not request those resources.

 PUSH_PROMISE frames MUST NOT be sent by the client.

 PUSH_PROMISE frames can be sent by the server on any client-initiated
 stream, but the stream MUST be in either the "open" or "half-closed
 (remote)" state with respect to the server. PUSH_PROMISE frames are
 interspersed with the frames that comprise a response, though they

 cannot be interspersed with HEADERS and CONTINUATION frames that
 comprise a single field block.

 Sending a PUSH_PROMISE frame creates a new stream and puts the stream
 into the "reserved (local)" state for the server and the "reserved
 (remote)" state for the client.

8.4.2. Push Responses

 After sending the PUSH_PROMISE frame, the server can begin delivering
 the pushed response as a response (Section 8.3.2) on a server-
 initiated stream that uses the promised stream identifier. The
 server uses this stream to transmit an HTTP response, using the same
 sequence of frames as that defined in Section 8.1. This stream
 becomes "half-closed" to the client (Section 5.1) after the initial
 HEADERS frame is sent.

 Once a client receives a PUSH_PROMISE frame and chooses to accept the
 pushed response, the client SHOULD NOT issue any requests for the
 promised response until after the promised stream has closed.

 If the client determines, for any reason, that it does not wish to
 receive the pushed response from the server or if the server takes
 too long to begin sending the promised response, the client can send
 a RST_STREAM frame, using either the CANCEL or REFUSED_STREAM code
 and referencing the pushed stream’s identifier.

 A client can use the SETTINGS_MAX_CONCURRENT_STREAMS setting to limit
 the number of responses that can be concurrently pushed by a server.
 Advertising a SETTINGS_MAX_CONCURRENT_STREAMS value of zero prevents
 the server from opening the streams necessary to push responses.
 However, this does not prevent the server from reserving streams
 using PUSH_PROMISE frames, because reserved streams do not count
 toward the concurrent stream limit. Clients that do not wish to
 receive pushed resources need to reset any unwanted reserved streams
 or set SETTINGS_ENABLE_PUSH to 0.

 Clients receiving a pushed response MUST validate that either the
 server is authoritative (see Section 10.1) or the proxy that provided
 the pushed response is configured for the corresponding request. For
 example, a server that offers a certificate for only the example.com
 DNS-ID (see [RFC6125]) is not permitted to push a response for
 <https://www.example.org/doc>.

 The response for a PUSH_PROMISE stream begins with a HEADERS frame,
 which immediately puts the stream into the "half-closed (remote)"
 state for the server and "half-closed (local)" state for the client,
 and ends with a frame with the END_STREAM flag set, which places the
 stream in the "closed" state.

 | Note: The client never sends a frame with the END_STREAM flag
 | set for a server push.

8.5. The CONNECT Method

 The CONNECT method (Section 9.3.6 of [HTTP]) is used to convert an
 HTTP connection into a tunnel to a remote host. CONNECT is primarily
 used with HTTP proxies to establish a TLS session with an origin
 server for the purposes of interacting with "https" resources.

 In HTTP/2, the CONNECT method establishes a tunnel over a single
 HTTP/2 stream to a remote host, rather than converting the entire
 connection to a tunnel. A CONNECT header section is constructed as
 defined in Section 8.3.1 ("Request Pseudo-Header Fields"), with a few
 differences. Specifically:

 * The ":method" pseudo-header field is set to CONNECT.

 * The ":scheme" and ":path" pseudo-header fields MUST be omitted.

 * The ":authority" pseudo-header field contains the host and port to

 connect to (equivalent to the authority-form of the request-target
 of CONNECT requests; see Section 3.2.3 of [HTTP/1.1]).

 A CONNECT request that does not conform to these restrictions is
 malformed (Section 8.1.1).

 A proxy that supports CONNECT establishes a TCP connection [TCP] to
 the host and port identified in the ":authority" pseudo-header field.
 Once this connection is successfully established, the proxy sends a
 HEADERS frame containing a 2xx-series status code to the client, as
 defined in Section 9.3.6 of [HTTP].

 After the initial HEADERS frame sent by each peer, all subsequent
 DATA frames correspond to data sent on the TCP connection. The frame
 payload of any DATA frames sent by the client is transmitted by the
 proxy to the TCP server; data received from the TCP server is
 assembled into DATA frames by the proxy. Frame types other than DATA
 or stream management frames (RST_STREAM, WINDOW_UPDATE, and PRIORITY)
 MUST NOT be sent on a connected stream and MUST be treated as a
 stream error (Section 5.4.2) if received.

 The TCP connection can be closed by either peer. The END_STREAM flag
 on a DATA frame is treated as being equivalent to the TCP FIN bit. A
 client is expected to send a DATA frame with the END_STREAM flag set
 after receiving a frame with the END_STREAM flag set. A proxy that
 receives a DATA frame with the END_STREAM flag set sends the attached
 data with the FIN bit set on the last TCP segment. A proxy that
 receives a TCP segment with the FIN bit set sends a DATA frame with
 the END_STREAM flag set. Note that the final TCP segment or DATA
 frame could be empty.

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error (Section 5.4.2) of
 type CONNECT_ERROR. Correspondingly, a proxy MUST send a TCP segment
 with the RST bit set if it detects an error with the stream or the
 HTTP/2 connection.

8.6. The Upgrade Header Field

 HTTP/2 does not support the 101 (Switching Protocols) informational
 status code (Section 15.2.2 of [HTTP]).

 The semantics of 101 (Switching Protocols) aren’t applicable to a
 multiplexed protocol. Similar functionality might be enabled through
 the use of extended CONNECT [RFC8441], and other protocols are able
 to use the same mechanisms that HTTP/2 uses to negotiate their use
 (see Section 3).

8.7. Request Reliability

 In general, an HTTP client is unable to retry a non-idempotent
 request when an error occurs because there is no means to determine
 the nature of the error (see Section 9.2.2 of [HTTP]). It is
 possible that some server processing occurred prior to the error,
 which could result in undesirable effects if the request were
 reattempted.

 HTTP/2 provides two mechanisms for providing a guarantee to a client
 that a request has not been processed:

 * The GOAWAY frame indicates the highest stream number that might
 have been processed. Requests on streams with higher numbers are
 therefore guaranteed to be safe to retry.

 * The REFUSED_STREAM error code can be included in a RST_STREAM
 frame to indicate that the stream is being closed prior to any
 processing having occurred. Any request that was sent on the
 reset stream can be safely retried.

 Requests that have not been processed have not failed; clients MAY

 automatically retry them, even those with non-idempotent methods.

 A server MUST NOT indicate that a stream has not been processed
 unless it can guarantee that fact. If frames that are on a stream
 are passed to the application layer for any stream, then
 REFUSED_STREAM MUST NOT be used for that stream, and a GOAWAY frame
 MUST include a stream identifier that is greater than or equal to the
 given stream identifier.

 In addition to these mechanisms, the PING frame provides a way for a
 client to easily test a connection. Connections that remain idle can
 become broken, because some middleboxes (for instance, network
 address translators or load balancers) silently discard connection
 bindings. The PING frame allows a client to safely test whether a
 connection is still active without sending a request.

8.8. Examples

 This section shows HTTP/1.1 requests and responses, with
 illustrations of equivalent HTTP/2 requests and responses.

8.8.1. Simple Request

 An HTTP GET request includes control data and a request header with
 no message content and is therefore transmitted as a single HEADERS
 frame, followed by zero or more CONTINUATION frames containing the
 serialized block of request header fields. The HEADERS frame in the
 following has both the END_HEADERS and END_STREAM flags set; no
 CONTINUATION frames are sent.

 GET /resource HTTP/1.1 HEADERS
 Host: example.org ==> + END_STREAM
 Accept: image/jpeg + END_HEADERS
 :method = GET
 :scheme = https
 :authority = example.org
 :path = /resource
 host = example.org
 accept = image/jpeg

8.8.2. Simple Response

 Similarly, a response that includes only control data and a response
 header is transmitted as a HEADERS frame (again, followed by zero or
 more CONTINUATION frames) containing the serialized block of response
 header fields.

 HTTP/1.1 304 Not Modified HEADERS
 ETag: "xyzzy" ==> + END_STREAM
 Expires: Thu, 23 Jan ... + END_HEADERS
 :status = 304
 etag = "xyzzy"
 expires = Thu, 23 Jan ...

8.8.3. Complex Request

 An HTTP POST request that includes control data and a request header
 with message content is transmitted as one HEADERS frame, followed by
 zero or more CONTINUATION frames containing the request header,
 followed by one or more DATA frames, with the last CONTINUATION (or
 HEADERS) frame having the END_HEADERS flag set and the final DATA
 frame having the END_STREAM flag set:

 POST /resource HTTP/1.1 HEADERS
 Host: example.org ==> - END_STREAM
 Content-Type: image/jpeg - END_HEADERS
 Content-Length: 123 :method = POST
 :authority = example.org
 :path = /resource
 {binary data} :scheme = https

 CONTINUATION
 + END_HEADERS
 content-type = image/jpeg
 host = example.org
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

 Note that data contributing to any given field line could be spread
 between field block fragments. The allocation of field lines to
 frames in this example is illustrative only.

8.8.4. Response with Body

 A response that includes control data and a response header with
 message content is transmitted as a HEADERS frame, followed by zero
 or more CONTINUATION frames, followed by one or more DATA frames,
 with the last DATA frame in the sequence having the END_STREAM flag
 set:

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ==> - END_STREAM
 Content-Length: 123 + END_HEADERS
 :status = 200
 {binary data} content-type = image/jpeg
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

8.8.5. Informational Responses

 An informational response using a 1xx status code other than 101 is
 transmitted as a HEADERS frame, followed by zero or more CONTINUATION
 frames.

 A trailer section is sent as a field block after both the request or
 response field block and all the DATA frames have been sent. The
 HEADERS frame starting the field block that comprises the trailer
 section has the END_STREAM flag set.

 The following example includes both a 100 (Continue) status code,
 which is sent in response to a request containing a "100-continue"
 token in the Expect header field, and a trailer section:

 HTTP/1.1 100 Continue HEADERS
 Extension-Field: bar ==> - END_STREAM
 + END_HEADERS
 :status = 100
 extension-field = bar

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ==> - END_STREAM
 Transfer-Encoding: chunked + END_HEADERS
 Trailer: Foo :status = 200
 content-type = image/jpeg
 123 trailer = Foo
 {binary data}
 0 DATA
 Foo: bar - END_STREAM
 {binary data}

 HEADERS
 + END_STREAM
 + END_HEADERS
 foo = bar

9. HTTP/2 Connections

 This section outlines attributes of HTTP that improve
 interoperability, reduce exposure to known security vulnerabilities,
 or reduce the potential for implementation variation.

9.1. Connection Management

 HTTP/2 connections are persistent. For best performance, it is
 expected that clients will not close connections until it is
 determined that no further communication with a server is necessary
 (for example, when a user navigates away from a particular web page)
 or until the server closes the connection.

 Clients SHOULD NOT open more than one HTTP/2 connection to a given
 host and port pair, where the host is derived from a URI, a selected
 alternative service [ALT-SVC], or a configured proxy.

 A client can create additional connections as replacements, either to
 replace connections that are near to exhausting the available stream
 identifier space (Section 5.1.1), to refresh the keying material for
 a TLS connection, or to replace connections that have encountered
 errors (Section 5.4.1).

 A client MAY open multiple connections to the same IP address and TCP
 port using different Server Name Indication [TLS-EXT] values or to
 provide different TLS client certificates but SHOULD avoid creating
 multiple connections with the same configuration.

 Servers are encouraged to maintain open connections for as long as
 possible but are permitted to terminate idle connections if
 necessary. When either endpoint chooses to close the transport-layer
 TCP connection, the terminating endpoint SHOULD first send a GOAWAY
 (Section 6.8) frame so that both endpoints can reliably determine
 whether previously sent frames have been processed and gracefully
 complete or terminate any necessary remaining tasks.

9.1.1. Connection Reuse

 Connections that are made to an origin server, either directly or
 through a tunnel created using the CONNECT method (Section 8.5), MAY
 be reused for requests with multiple different URI authority
 components. A connection can be reused as long as the origin server
 is authoritative (Section 10.1). For TCP connections without TLS,
 this depends on the host having resolved to the same IP address.

 For "https" resources, connection reuse additionally depends on
 having a certificate that is valid for the host in the URI. The
 certificate presented by the server MUST satisfy any checks that the
 client would perform when forming a new TLS connection for the host
 in the URI. A single certificate can be used to establish authority
 for multiple origins. Section 4.3 of [HTTP] describes how a client
 determines whether a server is authoritative for a URI.

 In some deployments, reusing a connection for multiple origins can
 result in requests being directed to the wrong origin server. For
 example, TLS termination might be performed by a middlebox that uses
 the TLS Server Name Indication [TLS-EXT] extension to select an
 origin server. This means that it is possible for clients to send
 requests to servers that might not be the intended target for the
 request, even though the server is otherwise authoritative.

 A server that does not wish clients to reuse connections can indicate
 that it is not authoritative for a request by sending a 421
 (Misdirected Request) status code in response to the request (see
 Section 15.5.20 of [HTTP]).

 A client that is configured to use a proxy over HTTP/2 directs
 requests to that proxy through a single connection. That is, all
 requests sent via a proxy reuse the connection to the proxy.

9.2. Use of TLS Features

 Implementations of HTTP/2 MUST use TLS version 1.2 [TLS12] or higher
 for HTTP/2 over TLS. The general TLS usage guidance in [TLSBCP]
 SHOULD be followed, with some additional restrictions that are
 specific to HTTP/2.

 The TLS implementation MUST support the Server Name Indication (SNI)
 [TLS-EXT] extension to TLS. If the server is identified by a domain
 name [DNS-TERMS], clients MUST send the server_name TLS extension
 unless an alternative mechanism to indicate the target host is used.

 Requirements for deployments of HTTP/2 that negotiate TLS 1.3 [TLS13]
 are included in Section 9.2.3. Deployments of TLS 1.2 are subject to
 the requirements in Sections 9.2.1 and 9.2.2. Implementations are
 encouraged to provide defaults that comply, but it is recognized that
 deployments are ultimately responsible for compliance.

9.2.1. TLS 1.2 Features

 This section describes restrictions on the TLS 1.2 feature set that
 can be used with HTTP/2. Due to deployment limitations, it might not
 be possible to fail TLS negotiation when these restrictions are not
 met. An endpoint MAY immediately terminate an HTTP/2 connection that
 does not meet these TLS requirements with a connection error
 (Section 5.4.1) of type INADEQUATE_SECURITY.

 A deployment of HTTP/2 over TLS 1.2 MUST disable compression. TLS
 compression can lead to the exposure of information that would not
 otherwise be revealed [RFC3749]. Generic compression is unnecessary,
 since HTTP/2 provides compression features that are more aware of
 context and therefore likely to be more appropriate for use for
 performance, security, or other reasons.

 A deployment of HTTP/2 over TLS 1.2 MUST disable renegotiation. An
 endpoint MUST treat a TLS renegotiation as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR. Note that disabling
 renegotiation can result in long-lived connections becoming unusable
 due to limits on the number of messages the underlying cipher suite
 can encipher.

 An endpoint MAY use renegotiation to provide confidentiality
 protection for client credentials offered in the handshake, but any
 renegotiation MUST occur prior to sending the connection preface. A
 server SHOULD request a client certificate if it sees a renegotiation
 request immediately after establishing a connection.

 This effectively prevents the use of renegotiation in response to a
 request for a specific protected resource. A future specification
 might provide a way to support this use case. Alternatively, a
 server might use an error (Section 5.4) of type HTTP_1_1_REQUIRED to
 request that the client use a protocol that supports renegotiation.

 Implementations MUST support ephemeral key exchange sizes of at least
 2048 bits for cipher suites that use ephemeral finite field Diffie-
 Hellman (DHE) (Section 8.1.2 of [TLS12]) and 224 bits for cipher
 suites that use ephemeral elliptic curve Diffie-Hellman (ECDHE)
 [RFC8422]. Clients MUST accept DHE sizes of up to 4096 bits.
 Endpoints MAY treat negotiation of key sizes smaller than the lower
 limits as a connection error (Section 5.4.1) of type
 INADEQUATE_SECURITY.

9.2.2. TLS 1.2 Cipher Suites

 A deployment of HTTP/2 over TLS 1.2 SHOULD NOT use any of the
 prohibited cipher suites listed in Appendix A.

 Endpoints MAY choose to generate a connection error (Section 5.4.1)
 of type INADEQUATE_SECURITY if one of the prohibited cipher suites is
 negotiated. A deployment that chooses to use a prohibited cipher
 suite risks triggering a connection error unless the set of potential
 peers is known to accept that cipher suite.

 Implementations MUST NOT generate this error in reaction to the
 negotiation of a cipher suite that is not prohibited. Consequently,
 when clients offer a cipher suite that is not prohibited, they have
 to be prepared to use that cipher suite with HTTP/2.

 The list of prohibited cipher suites includes the cipher suite that
 TLS 1.2 makes mandatory, which means that TLS 1.2 deployments could
 have non-intersecting sets of permitted cipher suites. To avoid this
 problem, which causes TLS handshake failures, deployments of HTTP/2
 that use TLS 1.2 MUST support TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 [TLS-ECDHE] with the P-256 elliptic curve [RFC8422].

 Note that clients might advertise support of cipher suites that are
 prohibited in order to allow for connection to servers that do not
 support HTTP/2. This allows servers to select HTTP/1.1 with a cipher
 suite that is prohibited in HTTP/2. However, this can result in
 HTTP/2 being negotiated with a prohibited cipher suite if the
 application protocol and cipher suite are independently selected.

9.2.3. TLS 1.3 Features

 TLS 1.3 includes a number of features not available in earlier
 versions. This section discusses the use of these features.

 HTTP/2 servers MUST NOT send post-handshake TLS 1.3
 CertificateRequest messages. HTTP/2 clients MUST treat a TLS post-
 handshake CertificateRequest message as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 The prohibition on post-handshake authentication applies even if the
 client offered the "post_handshake_auth" TLS extension. Post-
 handshake authentication support might be advertised independently of
 ALPN [TLS-ALPN]. Clients might offer the capability for use in other
 protocols, but inclusion of the extension cannot imply support within
 HTTP/2.

 [TLS13] defines other post-handshake messages, NewSessionTicket and
 KeyUpdate, which can be used as they have no direct interaction with
 HTTP/2. Unless the use of a new type of TLS message depends on an
 interaction with the application-layer protocol, that TLS message can
 be sent after the handshake completes.

 TLS early data MAY be used to send requests, provided that the
 guidance in [RFC8470] is observed. Clients send requests in early
 data assuming initial values for all server settings.

10. Security Considerations

 The use of TLS is necessary to provide many of the security
 properties of this protocol. Many of the claims in this section do
 not hold unless TLS is used as described in Section 9.2.

10.1. Server Authority

 HTTP/2 relies on the HTTP definition of authority for determining
 whether a server is authoritative in providing a given response (see
 Section 4.3 of [HTTP]). This relies on local name resolution for the
 "http" URI scheme and the authenticated server identity for the
 "https" scheme.

10.2. Cross-Protocol Attacks

 In a cross-protocol attack, an attacker causes a client to initiate a
 transaction in one protocol toward a server that understands a
 different protocol. An attacker might be able to cause the
 transaction to appear as a valid transaction in the second protocol.
 In combination with the capabilities of the web context, this can be
 used to interact with poorly protected servers in private networks.

 Completing a TLS handshake with an ALPN identifier for HTTP/2 can be

 considered sufficient protection against cross-protocol attacks.
 ALPN provides a positive indication that a server is willing to
 proceed with HTTP/2, which prevents attacks on other TLS-based
 protocols.

 The encryption in TLS makes it difficult for attackers to control the
 data that could be used in a cross-protocol attack on a cleartext
 protocol.

 The cleartext version of HTTP/2 has minimal protection against cross-
 protocol attacks. The connection preface (Section 3.4) contains a
 string that is designed to confuse HTTP/1.1 servers, but no special
 protection is offered for other protocols.

10.3. Intermediary Encapsulation Attacks

 HPACK permits encoding of field names and values that might be
 treated as delimiters in other HTTP versions. An intermediary that
 translates an HTTP/2 request or response MUST validate fields
 according to the rules in Section 8.2 before translating a message to
 another HTTP version. Translating a field that includes invalid
 delimiters could be used to cause recipients to incorrectly interpret
 a message, which could be exploited by an attacker.

 Section 8.2 does not include specific rules for validation of pseudo-
 header fields. If the values of these fields are used, additional
 validation is necessary. This is particularly important where
 ":scheme", ":authority", and ":path" are combined to form a single
 URI string [RFC3986]. Similar problems might occur when that URI or
 just ":path" is combined with ":method" to construct a request line
 (as in Section 3 of [HTTP/1.1]). Simple concatenation is not secure
 unless the input values are fully validated.

 An intermediary can reject fields that contain invalid field names or
 values for other reasons -- in particular, those fields that do not
 conform to the HTTP ABNF grammar from Section 5 of [HTTP].
 Intermediaries that do not perform any validation of fields other
 than the minimum required by Section 8.2 could forward messages that
 contain invalid field names or values.

 An intermediary that receives any fields that require removal before
 forwarding (see Section 7.6.1 of [HTTP]) MUST remove or replace those
 header fields when forwarding messages. Additionally, intermediaries
 should take care when forwarding messages containing Content-Length
 fields to ensure that the message is well-formed (Section 8.1.1).
 This ensures that if the message is translated into HTTP/1.1 at any
 point, the framing will be correct.

10.4. Cacheability of Pushed Responses

 Pushed responses do not have an explicit request from the client; the
 request is provided by the server in the PUSH_PROMISE frame.

 Caching responses that are pushed is possible based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Pushed responses for which an origin server is not authoritative (see
 Section 10.1) MUST NOT be used or cached.

10.5. Denial-of-Service Considerations

 An HTTP/2 connection can demand a greater commitment of resources to
 operate than an HTTP/1.1 connection. Both field section compression
 and flow control depend on a commitment of a greater amount of state.
 Settings for these features ensure that memory commitments for these
 features are strictly bounded.

 The number of PUSH_PROMISE frames is not constrained in the same
 fashion. A client that accepts server push SHOULD limit the number
 of streams it allows to be in the "reserved (remote)" state. An
 excessive number of server push streams can be treated as a stream
 error (Section 5.4.2) of type ENHANCE_YOUR_CALM.

 A number of HTTP/2 implementations were found to be vulnerable to
 denial of service [NFLX-2019-002]. Below is a list of known ways
 that implementations might be subject to denial-of-service attacks:

 * Inefficient tracking of outstanding outbound frames can lead to
 overload if an adversary can cause large numbers of frames to be
 enqueued for sending. A peer could use one of several techniques
 to cause large numbers of frames to be generated:

 - Providing tiny increments to flow control in WINDOW_UPDATE
 frames can cause a sender to generate a large number of DATA
 frames.

 - An endpoint is required to respond to a PING frame.

 - Each SETTINGS frame requires acknowledgment.

 - An invalid request (or server push) can cause a peer to send
 RST_STREAM frames in response.

 * An attacker can provide large amounts of flow-control credit at
 the HTTP/2 layer but withhold credit at the TCP layer, preventing
 frames from being sent. An endpoint that constructs and remembers
 frames for sending without considering TCP limits might be subject
 to resource exhaustion.

 * Large numbers of small or empty frames can be abused to cause a
 peer to expend time processing frame headers. Caution is required
 here as some uses of small frames are entirely legitimate, such as
 the sending of an empty DATA or CONTINUATION frame at the end of a
 stream.

 * The SETTINGS frame might also be abused to cause a peer to expend
 additional processing time. This might be done by pointlessly
 changing settings, sending multiple undefined settings, or
 changing the same setting multiple times in the same frame.

 * Handling reprioritization with PRIORITY frames can require
 significant processing time and can lead to overload if many
 PRIORITY frames are sent.

 * Field section compression also provides opportunities for an
 attacker to waste processing resources; see Section 7 of
 [COMPRESSION] for more details on potential abuses.

 * Limits in SETTINGS cannot be reduced instantaneously, which leaves
 an endpoint exposed to behavior from a peer that could exceed the
 new limits. In particular, immediately after establishing a
 connection, limits set by a server are not known to clients and
 could be exceeded without being an obvious protocol violation.

 Most of the features that might be exploited for denial of service --
 such as SETTINGS changes, small frames, field section compression --
 have legitimate uses. These features become a burden only when they
 are used unnecessarily or to excess.

 An endpoint that doesn’t monitor use of these features exposes itself
 to a risk of denial of service. Implementations SHOULD track the use
 of these features and set limits on their use. An endpoint MAY treat

 activity that is suspicious as a connection error (Section 5.4.1) of
 type ENHANCE_YOUR_CALM.

10.5.1. Limits on Field Block Size

 A large field block (Section 4.3) can cause an implementation to
 commit a large amount of state. Field lines that are critical for
 routing can appear toward the end of a field block, which prevents
 streaming of fields to their ultimate destination. This ordering and
 other reasons, such as ensuring cache correctness, mean that an
 endpoint might need to buffer the entire field block. Since there is
 no hard limit to the size of a field block, some endpoints could be
 forced to commit a large amount of available memory for field blocks.

 An endpoint can use the SETTINGS_MAX_HEADER_LIST_SIZE to advise peers
 of limits that might apply on the size of uncompressed field blocks.
 This setting is only advisory, so endpoints MAY choose to send field
 blocks that exceed this limit and risk the request or response being
 treated as malformed. This setting is specific to a connection, so
 any request or response could encounter a hop with a lower, unknown
 limit. An intermediary can attempt to avoid this problem by passing
 on values presented by different peers, but they are not obliged to
 do so.

 A server that receives a larger field block than it is willing to
 handle can send an HTTP 431 (Request Header Fields Too Large) status
 code [RFC6585]. A client can discard responses that it cannot
 process. The field block MUST be processed to ensure a consistent
 connection state, unless the connection is closed.

10.5.2. CONNECT Issues

 The CONNECT method can be used to create disproportionate load on a
 proxy, since stream creation is relatively inexpensive when compared
 to the creation and maintenance of a TCP connection. A proxy might
 also maintain some resources for a TCP connection beyond the closing
 of the stream that carries the CONNECT request, since the outgoing
 TCP connection remains in the TIME_WAIT state. Therefore, a proxy
 cannot rely on SETTINGS_MAX_CONCURRENT_STREAMS alone to limit the
 resources consumed by CONNECT requests.

10.6. Use of Compression

 Compression can allow an attacker to recover secret data when it is
 compressed in the same context as data under attacker control.
 HTTP/2 enables compression of field lines (Section 4.3); the
 following concerns also apply to the use of HTTP compressed content-
 codings (Section 8.4.1 of [HTTP]).

 There are demonstrable attacks on compression that exploit the
 characteristics of the Web (e.g., [BREACH]). The attacker induces
 multiple requests containing varying plaintext, observing the length
 of the resulting ciphertext in each, which reveals a shorter length
 when a guess about the secret is correct.

 Implementations communicating on a secure channel MUST NOT compress
 content that includes both confidential and attacker-controlled data
 unless separate compression dictionaries are used for each source of
 data. Compression MUST NOT be used if the source of data cannot be
 reliably determined. Generic stream compression, such as that
 provided by TLS, MUST NOT be used with HTTP/2 (see Section 9.2).

 Further considerations regarding the compression of header fields are
 described in [COMPRESSION].

10.7. Use of Padding

 Padding within HTTP/2 is not intended as a replacement for general
 purpose padding, such as that provided by TLS [TLS13]. Redundant
 padding could even be counterproductive. Correct application can
 depend on having specific knowledge of the data that is being padded.

 To mitigate attacks that rely on compression, disabling or limiting
 compression might be preferable to padding as a countermeasure.

 Padding can be used to obscure the exact size of frame content and is
 provided to mitigate specific attacks within HTTP -- for example,
 attacks where compressed content includes both attacker-controlled
 plaintext and secret data (e.g., [BREACH]).

 Use of padding can result in less protection than might seem
 immediately obvious. At best, padding only makes it more difficult
 for an attacker to infer length information by increasing the number
 of frames an attacker has to observe. Incorrectly implemented
 padding schemes can be easily defeated. In particular, randomized
 padding with a predictable distribution provides very little
 protection; similarly, padding frame payloads to a fixed size exposes
 information as frame payload sizes cross the fixed-sized boundary,
 which could be possible if an attacker can control plaintext.

 Intermediaries SHOULD retain padding for DATA frames but MAY drop
 padding for HEADERS and PUSH_PROMISE frames. A valid reason for an
 intermediary to change the amount of padding of frames is to improve
 the protections that padding provides.

10.8. Privacy Considerations

 Several characteristics of HTTP/2 provide an observer an opportunity
 to correlate actions of a single client or server over time. These
 include the values of settings, the manner in which flow-control
 windows are managed, the way priorities are allocated to streams, the
 timing of reactions to stimulus, and the handling of any features
 that are controlled by settings.

 As far as these create observable differences in behavior, they could
 be used as a basis for fingerprinting a specific client, as defined
 in Section 3.2 of [PRIVACY].

 HTTP/2’s preference for using a single TCP connection allows
 correlation of a user’s activity on a site. Reusing connections for
 different origins allows tracking across those origins.

 Because the PING and SETTINGS frames solicit immediate responses,
 they can be used by an endpoint to measure latency to their peer.
 This might have privacy implications in certain scenarios.

10.9. Remote Timing Attacks

 Remote timing attacks extract secrets from servers by observing
 variations in the time that servers take when processing requests
 that use secrets. HTTP/2 enables concurrent request creation and
 processing, which can give attackers better control over when request
 processing commences. Multiple HTTP/2 requests can be included in
 the same IP packet or TLS record. HTTP/2 can therefore make remote
 timing attacks more efficient by eliminating variability in request
 delivery, leaving only request order and the delivery of responses as
 sources of timing variability.

 Ensuring that processing time is not dependent on the value of a
 secret is the best defense against any form of timing attack.

11. IANA Considerations

 This revision of HTTP/2 marks the HTTP2-Settings header field and the
 h2c upgrade token, both defined in [RFC7540], as obsolete.

 Section 11 of [RFC7540] registered the h2 and h2c ALPN identifiers
 along with the PRI HTTP method. RFC 7540 also established a registry
 for frame types, settings, and error codes. These registrations and
 registries apply to HTTP/2, but are not redefined in this document.

 IANA has updated references to RFC 7540 in the following registries

 to refer to this document: "TLS Application-Layer Protocol
 Negotiation (ALPN) Protocol IDs", "HTTP/2 Frame Type", "HTTP/2
 Settings", "HTTP/2 Error Code", and "HTTP Method Registry". The
 registration of the PRI method has been updated to refer to
 Section 3.4; all other section numbers have not changed.

 IANA has changed the policy on those portions of the "HTTP/2 Frame
 Type" and "HTTP/2 Settings" registries that were reserved for
 Experimental Use in RFC 7540. These portions of the registries shall
 operate on the same policy as the remainder of each registry.

11.1. HTTP2-Settings Header Field Registration

 This section marks the HTTP2-Settings header field registered by
 Section 11.5 of [RFC7540] in the "Hypertext Transfer Protocol (HTTP)
 Field Name Registry" as obsolete. This capability has been removed:
 see Section 3.1. The registration is updated to include the details
 as required by Section 18.4 of [HTTP]:

 Field Name: HTTP2-Settings

 Status: obsoleted

 Reference: Section 3.2.1 of [RFC7540]

 Comments: Obsolete; see Section 11.1 of this document.

11.2. The h2c Upgrade Token

 This section records the h2c upgrade token registered by Section 11.8
 of [RFC7540] in the "Hypertext Transfer Protocol (HTTP) Upgrade Token
 Registry" as obsolete. This capability has been removed: see
 Section 3.1. The registration is updated as follows:

 Value: h2c

 Description: (OBSOLETE) Hypertext Transfer Protocol version 2
 (HTTP/2)

 Expected Version Tokens: None

 Reference: Section 3.1 of this document

12. References

12.1. Normative References

 [CACHING] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/info/rfc9111>.

 [COMPRESSION]
 Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [COOKIE] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8470] Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/info/rfc8470>.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [TLS-ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [TLS-ECDHE]
 Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

 [TLS-EXT] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [TLSBCP] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

12.2. Informative References

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [BREACH] Gluck, Y., Harris, N., and A. Prado, "BREACH: Reviving the
 CRIME Attack", 12 July 2013,
 <https://breachattack.com/resources/
 BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf>.

 [DNS-TERMS]

 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

 [HTTP-PRIORITY]
 Oku, K. and L. Pardue, "Extensible Prioritization Scheme
 for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
 <https://www.rfc-editor.org/info/rfc9218>.

 [HTTP/1.1] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,
 June 2022, <https://www.rfc-editor.org/info/rfc9112>.

 [NFLX-2019-002]
 Netflix, "HTTP/2 Denial of Service Advisory", 13 August
 2019, <https://github.com/Netflix/security-
 bulletins/blob/master/advisories/third-party/2019-002.md>.

 [PRIVACY] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC3749] Hollenbeck, S., "Transport Layer Security Protocol
 Compression Methods", RFC 3749, DOI 10.17487/RFC3749, May
 2004, <https://www.rfc-editor.org/info/rfc3749>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <https://www.rfc-editor.org/info/rfc6585>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",
 RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8441] McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

 [RFC8740] Benjamin, D., "Using TLS 1.3 with HTTP/2", RFC 8740,
 DOI 10.17487/RFC8740, February 2020,
 <https://www.rfc-editor.org/info/rfc8740>.

 [TALKING] Huang, L., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit", 2011,
 <https://www.adambarth.com/papers/2011/huang-chen-barth-
 rescorla-jackson.pdf>.

Appendix A. Prohibited TLS 1.2 Cipher Suites

 An HTTP/2 implementation MAY treat the negotiation of any of the
 following cipher suites with TLS 1.2 as a connection error

 (Section 5.4.1) of type INADEQUATE_SECURITY:

 * TLS_NULL_WITH_NULL_NULL
 * TLS_RSA_WITH_NULL_MD5
 * TLS_RSA_WITH_NULL_SHA
 * TLS_RSA_EXPORT_WITH_RC4_40_MD5
 * TLS_RSA_WITH_RC4_128_MD5
 * TLS_RSA_WITH_RC4_128_SHA
 * TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
 * TLS_RSA_WITH_IDEA_CBC_SHA
 * TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
 * TLS_RSA_WITH_DES_CBC_SHA
 * TLS_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
 * TLS_DH_DSS_WITH_DES_CBC_SHA
 * TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
 * TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
 * TLS_DH_RSA_WITH_DES_CBC_SHA
 * TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
 * TLS_DHE_DSS_WITH_DES_CBC_SHA
 * TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
 * TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
 * TLS_DHE_RSA_WITH_DES_CBC_SHA
 * TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_DH_anon_EXPORT_WITH_RC4_40_MD5
 * TLS_DH_anon_WITH_RC4_128_MD5
 * TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA
 * TLS_DH_anon_WITH_DES_CBC_SHA
 * TLS_DH_anon_WITH_3DES_EDE_CBC_SHA
 * TLS_KRB5_WITH_DES_CBC_SHA
 * TLS_KRB5_WITH_3DES_EDE_CBC_SHA
 * TLS_KRB5_WITH_RC4_128_SHA
 * TLS_KRB5_WITH_IDEA_CBC_SHA
 * TLS_KRB5_WITH_DES_CBC_MD5
 * TLS_KRB5_WITH_3DES_EDE_CBC_MD5
 * TLS_KRB5_WITH_RC4_128_MD5
 * TLS_KRB5_WITH_IDEA_CBC_MD5
 * TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
 * TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA
 * TLS_KRB5_EXPORT_WITH_RC4_40_SHA
 * TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
 * TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5
 * TLS_KRB5_EXPORT_WITH_RC4_40_MD5
 * TLS_PSK_WITH_NULL_SHA
 * TLS_DHE_PSK_WITH_NULL_SHA
 * TLS_RSA_PSK_WITH_NULL_SHA
 * TLS_RSA_WITH_AES_128_CBC_SHA
 * TLS_DH_DSS_WITH_AES_128_CBC_SHA
 * TLS_DH_RSA_WITH_AES_128_CBC_SHA
 * TLS_DHE_DSS_WITH_AES_128_CBC_SHA
 * TLS_DHE_RSA_WITH_AES_128_CBC_SHA
 * TLS_DH_anon_WITH_AES_128_CBC_SHA
 * TLS_RSA_WITH_AES_256_CBC_SHA
 * TLS_DH_DSS_WITH_AES_256_CBC_SHA
 * TLS_DH_RSA_WITH_AES_256_CBC_SHA
 * TLS_DHE_DSS_WITH_AES_256_CBC_SHA
 * TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 * TLS_DH_anon_WITH_AES_256_CBC_SHA
 * TLS_RSA_WITH_NULL_SHA256
 * TLS_RSA_WITH_AES_128_CBC_SHA256
 * TLS_RSA_WITH_AES_256_CBC_SHA256
 * TLS_DH_DSS_WITH_AES_128_CBC_SHA256
 * TLS_DH_RSA_WITH_AES_128_CBC_SHA256
 * TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
 * TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
 * TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA
 * TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA
 * TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA
 * TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
 * TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA

 * TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
 * TLS_DH_DSS_WITH_AES_256_CBC_SHA256
 * TLS_DH_RSA_WITH_AES_256_CBC_SHA256
 * TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
 * TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
 * TLS_DH_anon_WITH_AES_128_CBC_SHA256
 * TLS_DH_anon_WITH_AES_256_CBC_SHA256
 * TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
 * TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA
 * TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA
 * TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA
 * TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
 * TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA
 * TLS_PSK_WITH_RC4_128_SHA
 * TLS_PSK_WITH_3DES_EDE_CBC_SHA
 * TLS_PSK_WITH_AES_128_CBC_SHA
 * TLS_PSK_WITH_AES_256_CBC_SHA
 * TLS_DHE_PSK_WITH_RC4_128_SHA
 * TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA
 * TLS_DHE_PSK_WITH_AES_128_CBC_SHA
 * TLS_DHE_PSK_WITH_AES_256_CBC_SHA
 * TLS_RSA_PSK_WITH_RC4_128_SHA
 * TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA
 * TLS_RSA_PSK_WITH_AES_128_CBC_SHA
 * TLS_RSA_PSK_WITH_AES_256_CBC_SHA
 * TLS_RSA_WITH_SEED_CBC_SHA
 * TLS_DH_DSS_WITH_SEED_CBC_SHA
 * TLS_DH_RSA_WITH_SEED_CBC_SHA
 * TLS_DHE_DSS_WITH_SEED_CBC_SHA
 * TLS_DHE_RSA_WITH_SEED_CBC_SHA
 * TLS_DH_anon_WITH_SEED_CBC_SHA
 * TLS_RSA_WITH_AES_128_GCM_SHA256
 * TLS_RSA_WITH_AES_256_GCM_SHA384
 * TLS_DH_RSA_WITH_AES_128_GCM_SHA256
 * TLS_DH_RSA_WITH_AES_256_GCM_SHA384
 * TLS_DH_DSS_WITH_AES_128_GCM_SHA256
 * TLS_DH_DSS_WITH_AES_256_GCM_SHA384
 * TLS_DH_anon_WITH_AES_128_GCM_SHA256
 * TLS_DH_anon_WITH_AES_256_GCM_SHA384
 * TLS_PSK_WITH_AES_128_GCM_SHA256
 * TLS_PSK_WITH_AES_256_GCM_SHA384
 * TLS_RSA_PSK_WITH_AES_128_GCM_SHA256
 * TLS_RSA_PSK_WITH_AES_256_GCM_SHA384
 * TLS_PSK_WITH_AES_128_CBC_SHA256
 * TLS_PSK_WITH_AES_256_CBC_SHA384
 * TLS_PSK_WITH_NULL_SHA256
 * TLS_PSK_WITH_NULL_SHA384
 * TLS_DHE_PSK_WITH_AES_128_CBC_SHA256
 * TLS_DHE_PSK_WITH_AES_256_CBC_SHA384
 * TLS_DHE_PSK_WITH_NULL_SHA256
 * TLS_DHE_PSK_WITH_NULL_SHA384
 * TLS_RSA_PSK_WITH_AES_128_CBC_SHA256
 * TLS_RSA_PSK_WITH_AES_256_CBC_SHA384
 * TLS_RSA_PSK_WITH_NULL_SHA256
 * TLS_RSA_PSK_WITH_NULL_SHA384
 * TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256
 * TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 * TLS_ECDH_ECDSA_WITH_NULL_SHA
 * TLS_ECDH_ECDSA_WITH_RC4_128_SHA
 * TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

 * TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
 * TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
 * TLS_ECDHE_ECDSA_WITH_NULL_SHA
 * TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
 * TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
 * TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
 * TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
 * TLS_ECDH_RSA_WITH_NULL_SHA
 * TLS_ECDH_RSA_WITH_RC4_128_SHA
 * TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
 * TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
 * TLS_ECDHE_RSA_WITH_NULL_SHA
 * TLS_ECDHE_RSA_WITH_RC4_128_SHA
 * TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 * TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
 * TLS_ECDH_anon_WITH_NULL_SHA
 * TLS_ECDH_anon_WITH_RC4_128_SHA
 * TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
 * TLS_ECDH_anon_WITH_AES_128_CBC_SHA
 * TLS_ECDH_anon_WITH_AES_256_CBC_SHA
 * TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA
 * TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA
 * TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA
 * TLS_SRP_SHA_WITH_AES_128_CBC_SHA
 * TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA
 * TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA
 * TLS_SRP_SHA_WITH_AES_256_CBC_SHA
 * TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA
 * TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA
 * TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 * TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
 * TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
 * TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
 * TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 * TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 * TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
 * TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
 * TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
 * TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
 * TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
 * TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
 * TLS_ECDHE_PSK_WITH_RC4_128_SHA
 * TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA
 * TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
 * TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
 * TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
 * TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384
 * TLS_ECDHE_PSK_WITH_NULL_SHA
 * TLS_ECDHE_PSK_WITH_NULL_SHA256
 * TLS_ECDHE_PSK_WITH_NULL_SHA384
 * TLS_RSA_WITH_ARIA_128_CBC_SHA256
 * TLS_RSA_WITH_ARIA_256_CBC_SHA384
 * TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256
 * TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384
 * TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256
 * TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384
 * TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256
 * TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384
 * TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256
 * TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384
 * TLS_DH_anon_WITH_ARIA_128_CBC_SHA256
 * TLS_DH_anon_WITH_ARIA_256_CBC_SHA384
 * TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256
 * TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384
 * TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256
 * TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384
 * TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256
 * TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384
 * TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256

 * TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384
 * TLS_RSA_WITH_ARIA_128_GCM_SHA256
 * TLS_RSA_WITH_ARIA_256_GCM_SHA384
 * TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256
 * TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384
 * TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256
 * TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384
 * TLS_DH_anon_WITH_ARIA_128_GCM_SHA256
 * TLS_DH_anon_WITH_ARIA_256_GCM_SHA384
 * TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256
 * TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384
 * TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256
 * TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384
 * TLS_PSK_WITH_ARIA_128_CBC_SHA256
 * TLS_PSK_WITH_ARIA_256_CBC_SHA384
 * TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256
 * TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384
 * TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256
 * TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384
 * TLS_PSK_WITH_ARIA_128_GCM_SHA256
 * TLS_PSK_WITH_ARIA_256_GCM_SHA384
 * TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256
 * TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384
 * TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256
 * TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384
 * TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256
 * TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384
 * TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256
 * TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384
 * TLS_RSA_WITH_AES_128_CCM
 * TLS_RSA_WITH_AES_256_CCM
 * TLS_RSA_WITH_AES_128_CCM_8
 * TLS_RSA_WITH_AES_256_CCM_8
 * TLS_PSK_WITH_AES_128_CCM
 * TLS_PSK_WITH_AES_256_CCM
 * TLS_PSK_WITH_AES_128_CCM_8
 * TLS_PSK_WITH_AES_256_CCM_8

 | Note: This list was assembled from the set of registered TLS
 | cipher suites when [RFC7540] was developed. This list includes
 | those cipher suites that do not offer an ephemeral key exchange
 | and those that are based on the TLS null, stream, or block
 | cipher type (as defined in Section 6.2.3 of [TLS12]).

 | Additional cipher suites with these properties could be
 | defined; these would not be explicitly prohibited.

 For more details, see Section 9.2.2.

Appendix B. Changes from RFC 7540

 This revision includes the following substantive changes:

 * Use of TLS 1.3 was defined based on [RFC8740], which this document
 obsoletes.

 * The priority scheme defined in RFC 7540 is deprecated.
 Definitions for the format of the PRIORITY frame and the priority
 fields in the HEADERS frame have been retained, plus the rules
 governing when PRIORITY frames can be sent and received, but the
 semantics of these fields are only described in RFC 7540. The
 priority signaling scheme from RFC 7540 was not successful. Using
 the simpler signaling in [HTTP-PRIORITY] is recommended.

 * The HTTP/1.1 Upgrade mechanism is deprecated and no longer
 specified in this document. It was never widely deployed, with
 plaintext HTTP/2 users choosing to use the prior-knowledge
 implementation instead.

 * Validation for field names and values has been narrowed. The
 validation that is mandatory for intermediaries is precisely
 defined, and error reporting for requests has been amended to
 encourage sending 400-series status codes.

 * The ranges of codepoints for settings and frame types that were
 reserved for Experimental Use are now available for general use.

 * Connection-specific header fields -- which are prohibited -- are
 more precisely and comprehensively identified.

 * Host and ":authority" are no longer permitted to disagree.

 * Rules for sending Dynamic Table Size Update instructions after
 changes in settings have been clarified in Section 4.3.1.

 Editorial changes are also included. In particular, changes to
 terminology and document structure are in response to updates to core
 HTTP semantics [HTTP]. Those documents now include some concepts
 that were first defined in RFC 7540, such as the 421 status code or
 connection coalescing.

Acknowledgments

 Credit for non-trivial input to this document is owed to a large
 number of people who have contributed to the HTTP Working Group over
 the years. [RFC7540] contains a more extensive list of people that
 deserve acknowledgment for their contributions.

Contributors

 Mike Belshe and Roberto Peon authored the text that this document is
 based on.

Authors’ Addresses

 Martin Thomson (editor)
 Mozilla
 Australia
 Email: mt@lowentropy.net

 Cory Benfield (editor)
 Apple Inc.
 Email: cbenfield@apple.com

