
RFC 9368

Compatible Version Negotiation for QUIC

Abstract

QUIC does not provide a complete version negotiation mechanism but instead only provides a

way for the server to indicate that the version the client chose is unacceptable. This document

describes a version negotiation mechanism that allows a client and server to select a mutually

supported version. Optionally, if the client's chosen version and the negotiated version share a

compatible first flight format, the negotiation can take place without incurring an extra round

trip. This document updates RFC 8999.

Stream:

RFC:

Updates:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9368

8999

Standards Track

May 2023

2070-1721

 D. Schinazi

Google LLC

E. Rescorla

Mozilla

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9368

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Schinazi & Rescorla Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9368
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/info/rfc9368
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions

1.2. Definitions

2. Version Negotiation Mechanism

2.1. Incompatible Version Negotiation

2.2. Compatible Versions

2.3. Compatible Version Negotiation

2.4. Connections and Version Negotiation

2.5. Client Choice of Original Version

3. Version Information

4. Version Downgrade Prevention

5. Server Deployments of QUIC

6. Application-Layer Protocol Considerations

7. Considerations for Future Versions

7.1. Interaction with Retry

7.2. Interaction with TLS Resumption

7.3. Interaction with 0-RTT

8. Special Handling for QUIC Version 1

9. Security Considerations

10. IANA Considerations

10.1. QUIC Transport Parameter

10.2. QUIC Transport Error Code

11. References

11.1. Normative References

11.2. Informative References

Acknowledgments

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 2

Authors' Addresses

1. Introduction

The version-invariant properties of QUIC define a Version Negotiation

packet but do not specify how an endpoint reacts when it receives one. QUIC version 1

allows the server to use a Version Negotiation packet to indicate that the version the client chose

is unacceptable, but it doesn't allow the client to safely make use of that information to create a

new connection with a mutually supported version. This document updates

by defining version negotiation mechanisms that leverage the Version Negotiation packet.

With proper safety mechanisms in place, the Version Negotiation packet can be part of a

mechanism to allow two QUIC implementations to negotiate between two totally disjoint

versions of QUIC. This document specifies version negotiation using Version Negotiation packets,

which adds an extra round trip to connection establishment if needed.

It is beneficial to avoid additional round trips whenever possible, especially given that most

incremental versions are broadly similar to the previous version. This specification also defines a

simple version negotiation mechanism which leverages similarities between versions and can

negotiate between "compatible" versions without additional round trips.

[QUIC-INVARIANTS]

[QUIC]

[QUIC-INVARIANTS]

1.1. Conventions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Definitions

The document uses the following terms:

In the context of a given QUIC connection, the "first flight" of packets refers to the set of

packets the client creates and sends to initiate the connection before it has heard back from

the server.

In the context of a given QUIC connection, the "client's Chosen Version" is the QUIC version of

the connection's first flight.

The "Original Version" is the QUIC version of the very first packet the client sends to the

server. If version negotiation spans multiple connections (see Section 2.4), the Original

Version is equal to the client's Chosen Version of the first QUIC connection.

The "Negotiated Version" is the QUIC version in use on the connection once the version

negotiation process completes.

•

•

•

•

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 3

The "Maximum Segment Lifetime" (MSL) represents the time a QUIC packet can exist in the

network. Implementations can make this configurable, and a value is one

minute. Note that the term "segment" here originated in .

•

RECOMMENDED

Section 3.4.1 of [TCP]

2. Version Negotiation Mechanism

This document specifies two means of performing version negotiation: 1) "incompatible", which

requires a round trip and is applicable to all versions, and 2) "compatible", which allows saving

the round trip but only applies when the versions are compatible (see Section 2.2).

The client initiates a QUIC connection by choosing an Original Version and sending a first flight

of QUIC packets with a long header to the server . The client's first flight

includes Version Information (see Section 3), which will be used to optionally enable compatible

version negotiation (see Section 2.3) and to prevent version downgrade attacks (see Section 4).

Upon receiving this first flight, the server verifies whether it knows how to parse first flights

from the Chosen Version (which is also the Original Version in this case). If it does not, then it

starts incompatible version negotiation (see Section 2.1), which causes the client to initiate a new

connection with a different version. For instance, if the client initiates a connection with version

A that the server can't parse, the server starts incompatible version negotiation; then, when the

client initiates a new connection with version B, we say that the first connection's client Chosen

Version is A, the second connection's client Chosen Version is B, and the Original Version for the

entire sequence is A.

If the server can parse the first flight, it can establish the connection using the client's Chosen

Version, or it select any other compatible version, as described in Section 2.3.

Note that it is possible for a server to have the ability to parse the first flight of a given version

without fully supporting it, in the sense that it implements enough of the version's specification

to parse first flight packets but not enough to fully establish a connection using that version.

[QUIC-INVARIANTS]

MAY

2.1. Incompatible Version Negotiation

The server starts incompatible version negotiation by sending a Version Negotiation packet. This

packet include each entry from the server's set of Offered Versions (see Section 5) in a

Supported Version field. The server add reserved versions (as defined in

) in Supported Version fields.

Clients will ignore a Version Negotiation packet if it contains the Original Version attempted by

the client, as required by Section 4. The client also ignores a Version Negotiation packet that

contains incorrect connection ID fields, as required by .

Upon receiving the Version Negotiation packet, the client search for a version it supports

in the list provided by the server. If it doesn't find one, it abort the connection attempt.

Otherwise, it select a mutually supported version and send a new first flight with that

version -- this version is now the Negotiated Version.

SHALL

MAY Section 6.3 of

[QUIC]

Section 6 of [QUIC-INVARIANTS]

SHALL

SHALL

SHALL

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9293#section-3.4.1
https://www.rfc-editor.org/rfc/rfc9000#section-6.3
https://www.rfc-editor.org/rfc/rfc8999#section-6

The new first flight will allow the endpoints to establish a connection using the Negotiated

Version. The handshake of the Negotiated Version will exchange Version Information (see Section

3) that is required to ensure that version negotiation was genuine, i.e., that no attacker injected

packets in order to influence the version negotiation process (see Section 4).

Only servers can start incompatible version negotiation. Clients send Version

Negotiation packets and servers ignore all received Version Negotiation packets.

MUST NOT

MUST

2.2. Compatible Versions

If A and B are two distinct versions of QUIC, A is said to be "compatible" with B if it is possible to

take a first flight of packets from version A and convert it into a first flight of packets from

version B. As an example, if versions A and B are absolutely equal in their wire image and

behavior during the handshake but differ after the handshake, then A is compatible with B and B

is compatible with A. Note that the conversion of the first flight can be lossy; some data, such as

QUIC version 1 0-RTT packets, could be ignored during conversion and retransmitted later.

Version compatibility is not symmetric. It is possible for version A to be compatible with version

B and for version B not to be compatible with version A. This could happen, for example, if

version B is a strict superset of version A, i.e., if version A includes the concept of streams and

STREAM frames and version B includes the concept of streams and the hypothetical concept of

tubes along with STREAM and TUBE frames, then A would be compatible with B, but B would not

be compatible with A.

Note that version compatibility does not mean that every single possible instance of a first flight

will succeed in conversion to the other version. A first flight using version A is said to be

"compatible" with version B if two conditions are met: (1) version A is compatible with version B

and (2) the conversion of this first flight to version B is well defined. For example, if version B is

equal to version A in all aspects except it introduced a new frame in its first flight that version A

cannot parse or even ignore, then version B could still be compatible with version A, as

conversions would succeed for connections where that frame is not used. In this example, first

flights using version B that carry this new frame would not be compatible with version A.

When a new version of QUIC is defined, it is assumed to not be compatible with any other

version unless otherwise specified. Similarly, no other version is compatible with the new

version unless otherwise specified. Implementations assume compatibility between

versions unless explicitly specified.

Note that both endpoints might disagree on whether two versions are compatible or not. For

example, two versions could have been defined concurrently and then specified as compatible in

a third document much later -- in that scenario, one endpoint might be aware of the

compatibility document, while the other may not.

MUST NOT

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 5

2.3. Compatible Version Negotiation

When the server can parse the client's first flight using the client's Chosen Version, it can extract

the client's Version Information structure (see Section 3). This contains the list of versions that

the client knows its first flight is compatible with.

In order to perform compatible version negotiation, the server select one of these versions

that it (1) supports and (2) knows the client's Chosen Version is compatible with. This selected

version is now the Negotiated Version. After selecting it, the server attempts to convert the

client's first flight into that version and replies to the client as if it had received the converted

first flight.

If those formats are identical, as in cases where the Negotiated Version is the same as the client's

Chosen Version, then this will be the identity transformation. If the first flight is correctly

formatted, then this conversion process cannot fail by definition of the first flight being

compatible; if the server is unable to convert the first flight, it abort the handshake.

If a document specifies that a QUIC version is compatible with another, that document

specify the mechanism by which clients are made aware of the Negotiated Version. An example

of such a mechanism is to have the client determine the server's Negotiated Version by

examining the QUIC long header Version field. Note that, in this example mechanism, it is

possible for the server to initially send packets with the client's Chosen Version before switching

to the Negotiated Version (this can happen when the client's Version Information structure spans

multiple packets; in that case, the server might acknowledge the first packet in the client's

Chosen Version and later switch to a different Negotiated Version). Mutually compatible versions

 use the same mechanism.

Note that, after the first flight is converted to the Negotiated Version, the handshake completes in

the Negotiated Version. If the Negotiated Version has requirements that apply during the

handshake, those requirements apply to the entire handshake, including the converted first

flight. In particular, if the Negotiated Version mandates that endpoints perform validations on

Handshake packets, endpoints also perform such validations on the converted first flight.

For instance, if the Negotiated Version requires that the 5-tuple remain stable for the entire

handshake (as QUIC version 1 does), then both endpoints need to validate the 5-tuple of all

packets received during the handshake, including the converted first flight.

Note also that the client can disable compatible version negotiation by only including the Chosen

Version in the Available Versions field of the Version Information (see Section 3).

If the server does not find a compatible version (including the client's Chosen Version), it will

perform incompatible version negotiation instead (see Section 2.1).

Note that it is possible to have incompatible version negotiation followed by compatible version

negotiation. For instance, if version A is compatible with version B and version C is compatible

with version D, the following scenario could occur:

MUST

MUST

MUST

SHOULD

MUST

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 6

In this example, the client selected C from the server's Version Negotiation packet, but the server

preferred D and then selected it from the client's offer.

Figure 1: Combined Negotiation Example

Client Server

Chosen = A, Available Versions = (A, B) ------------->
<------------------------ Version Negotiation = (D, C)

Chosen = C, Available Versions = (C, D) ------------->
<------------- Chosen = D, Available Versions = (D, C)

2.4. Connections and Version Negotiation

QUIC connections are shared state between a client and a server . The

compatible version negotiation mechanism defined in this document (see Section 2.3) is

performed as part of a single QUIC connection; that is, the packets with the client's Chosen

Version are part of the same connection as the packets with the Negotiated Version.

In comparison, the incompatible version negotiation mechanism, which leverages QUIC Version

Negotiation packets (see Section 2.1), conceptually operates across two QUIC connections, i.e., the

connection attempt prior to receiving the Version Negotiation packet is distinct from the

connection with the incompatible version that follows.

Note that this separation across two connections is conceptual, i.e., it applies to normative

requirements on QUIC connections, but it does not require implementations to internally use two

distinct connection objects.

[QUIC-INVARIANTS]

2.5. Client Choice of Original Version

When the client picks its Original Version, it try to avoid incompatible version

negotiation to save a round trip. Therefore, the client pick an Original Version to

maximize the combined probability that both:

the server knows how to parse first flights from the Original Version and

the Original Version is compatible with the client's preferred version.

Without additional information, this could mean selecting the oldest version that the client

supports while advertising newer compatible versions in the client's first flight.

SHOULD

SHOULD

•

•

3. Version Information

During the handshake, endpoints will exchange Version Information, which consists of a Chosen

Version and a list of Available Versions. Any version of QUIC that supports this mechanism

provide a mechanism to exchange Version Information in both directions during the handshake,

such that this data is authenticated.

MUST

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 7

Chosen Version:

Client-Sent Available Versions:

Server-Sent Available Versions:

In QUIC version 1, the Version Information is transmitted using a new version_information

transport parameter (see). The contents of Version Information are shown

below (using the notation from):

The content of each field is described below:

The version that the sender has chosen to use for this connection. In most

cases, this field will be equal to the value of the Version field in the long header that carries

this data; however, future versions or extensions can choose to set different values in the long

header Version field.

The contents of the Available Versions field depend on whether it is sent by the client or by the

server.

When sent by a client, the Available Versions field lists all the

versions that this first flight is compatible with, ordered by descending preference. Note that

the version in the Chosen Version field be included in this list to allow the client to

communicate the Chosen Version's preference. Note that this preference is only advisory;

servers choose to use their own preference instead.

When sent by a server, the Available Versions field lists all the

Fully Deployed Versions of this server deployment (see Section 5). The ordering of the

versions in this field does not carry any semantics. Note that the version in the Chosen

Version field is not necessarily included in this list, because the server operator could be in

the process of removing support for this version. For the same reason, the Available Versions

field be empty.

Clients and servers both include versions following the pattern 0x?a?a?a?a in their Available

Versions list. Those versions are reserved to exercise version negotiation (see

) and will never be selected when choosing a version to use.

Section 7.4 of [QUIC]

Section 1.3 of [QUIC]

Figure 2: Version Information Format

Version Information {
 Chosen Version (32),
 Available Versions (32) ...,
}

MUST

MAY

MAY

MAY

Section 15 of

[QUIC]

4. Version Downgrade Prevention

A version downgrade is an attack where a malicious entity manages to make the QUIC endpoints

negotiate a QUIC version different from the one they would have negotiated in the absence of the

attack. The mechanism described in this document is designed to prevent downgrade attacks.

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9000#section-7.4
https://www.rfc-editor.org/rfc/rfc9000#section-1.3
https://www.rfc-editor.org/rfc/rfc9000#section-15

Clients ignore any received Version Negotiation packets that contain the Original Version.

A client that makes a connection attempt based on information received from a Version

Negotiation packet ignore any Version Negotiation packets it receives in response to that

connection attempt.

Both endpoints parse their peer's Version Information during the handshake. If that leads

to a parsing failure (for example, if it is too short or if its length is not divisible by four), then the

endpoint close the connection; if the connection was using QUIC version 1, that connection

closure use a transport error of type TRANSPORT_PARAMETER_ERROR. If an endpoint

receives a Chosen Version equal to zero, or any Available Version equal to zero, it treat it as

a parsing failure. If a server receives Version Information where the Chosen Version is not

included in Available Versions, it treat it as a parsing failure.

Every QUIC version that supports version negotiation define a method for closing the

connection with a version negotiation error. For QUIC version 1, version negotiation errors are

signaled using a transport error of type VERSION_NEGOTIATION_ERROR (see Section 10.2).

When a server receives a client's first flight, the server will first establish which QUIC version is

in use for this connection in order to properly parse the first flight. This may involve examining

data that is not part of the handshake transcript, such as parts of the packet header. When the

server then processes the client's Version Information, the server validate that the client's

Chosen Version matches the version in use for the connection. If the two differ, the server

close the connection with a version negotiation error.

In the specific case of QUIC version 1, the server determines that version 1 is in use by observing

that the Version field of the first Long Header packet it receives is set to 0x00000001.

Subsequently, if the server receives the client's Version Information over QUIC version 1 (as

indicated by the Version field of the Long Header packets that carried the transport parameters)

and the client's Chosen Version is not set to 0x00000001, the server close the connection

with a version negotiation error.

Servers complete the handshake even if the Version Information is missing. Clients

 complete the handshake if they are reacting to a Version Negotiation packet and the Version

Information is missing, but do so otherwise.

If a client receives Version Information where the server's Chosen Version was not sent by the

client as part of its Available Versions, the client close the connection with a version

negotiation error. If a client has reacted to a Version Negotiation packet and the server's Version

Information was missing, the client close the connection with a version negotiation error.

If the client received and acted on a Version Negotiation packet, the client validate the

server's Available Versions field. The Available Versions field is validated by confirming that the

client would have attempted the same version with knowledge of the versions the server

supports. That is, the client would have selected the same version if it received a Version

Negotiation packet that listed the versions in the server's Available Versions field, plus the

Negotiated Version. If the client would have selected a different version, the client close the

connection with a version negotiation error. In particular, if the client reacted to a Version

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MAY MUST

NOT

MAY

MUST

MUST

MUST

MUST

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 9

Negotiation packet and the server's Available Versions field is empty, the client close the

connection with a version negotiation error. These connection closures prevent an attacker from

being able to use forged Version Negotiation packets to force a version downgrade.

As an example, let's assume a client supports hypothetical QUIC versions 10, 12, and 14 with a

preference for higher versions. The client initiates a connection attempt with version 12. Let's

explore two independent example scenarios:

In the first scenario, the server supports versions 10, 13, and 14, but only 13 and 14 are Fully

Deployed (see Section 5). The server sends a Version Negotiation packet with versions 10, 13,

and 14. This triggers an incompatible version negotiation, and the client initiates a new

connection with version 14. Then, the server's Available Versions field contains 13 and 14. In

that scenario, the client would have also picked 14 if it had received a Version Negotiation

packet with versions 13 and 14; therefore, the handshake succeeds using Negotiated Version

14.

In the second scenario, the server supports versions 10, 13, and 14, and they are all Fully

Deployed. However, the attacker forges a Version Negotiation packet with versions 10 and

13. This triggers an incompatible version negotiation, and the client initiates a new

connection with version 10. Then, the server's Available Versions field contains 10, 13, and

14. In that scenario, the client would have picked 14 instead of 10 if it had received a Version

Negotiation packet with versions 10, 13, and 14; therefore, the client aborts the handshake

with a version negotiation error.

This validation of Available Versions is not sufficient to prevent downgrade. Downgrade

prevention also depends on the client ignoring Version Negotiation packets that contain the

Original Version (see Section 2.1).

After the process of version negotiation described in this document completes, the version in use

for the connection is the version that the server sent in the Chosen Version field of its Version

Information. That remains true even if other versions were used in the Version field of long

headers at any point in the lifetime of the connection. In particular, since the client can be made

aware of the Negotiated Version by the QUIC long header version during compatible version

negotiation (see Section 2.3), clients validate that the server's Chosen Version is equal to the

Negotiated Version; if they do not match, the client close the connection with a version

negotiation error. This prevents an attacker's ability to influence version negotiation by forging

the long header Version field.

MUST

•

•

MUST

MUST

Acceptable Versions:

5. Server Deployments of QUIC

While this document mainly discusses a single QUIC server, it is common for deployments of

QUIC servers to include a fleet of multiple server instances. Therefore, we define the following

terms:

This is the set of versions supported by a given server instance. More

specifically, these are the versions that a given server instance will use if a client sends a first

flight using them.

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 10

Offered Versions:

Fully Deployed Versions:

This is the set of versions that a given server instance will send in a Version

Negotiation packet if it receives a first flight from an unknown version. This set will most

often be equal to the Acceptable Versions set, except during short transitions while versions

are added or removed (see below).

This is the set of QUIC versions that is supported and negotiated by

every single QUIC server instance in this deployment. If a deployment only contains a single

server instance, then this set is equal to the Offered Versions set, except during short

transitions while versions are added or removed (see below).

If a deployment contains multiple server instances, software updates may not happen at exactly

the same time on all server instances. Because of this, a client might receive a Version

Negotiation packet from a server instance that has already been updated, and the client's

resulting connection attempt might reach a different server instance which hasn't been updated

yet.

However, even when there is only a single server instance, it is still possible to receive a stale

Version Negotiation packet if the server performs its software update while the Version

Negotiation packet is in flight.

This could cause the version downgrade prevention mechanism described in Section 4 to falsely

detect a downgrade attack. To avoid that, server operators perform a three-step process

when they wish to add or remove support for a version, as described below.

When adding support for a new version:

The first step is to progressively add support for the new version to all server instances. This

step updates the Acceptable Versions but not the Offered Versions nor the Fully Deployed

Versions. Once all server instances have been updated, operators wait for at least one MSL to

allow any in-flight Version Negotiation packets to arrive.

Then, the second step is to progressively add the new version to Offered Versions on all

server instances. Once complete, operators wait for at least another MSL.

Finally, the third step is to progressively add the new version to Fully Deployed Versions on

all server instances.

When removing support for a version:

The first step is to progressively remove the version from Fully Deployed Versions on all

server instances. Once it has been removed on all server instances, operators wait for at least

one MSL to allow any in-flight Version Negotiation packets to arrive.

Then, the second step is to progressively remove the version from Offered Versions on all

server instances. Once complete, operators wait for at least another MSL.

Finally, the third step is to progressively remove support for the version from all server

instances. That step updates the Acceptable Versions.

SHOULD

•

•

•

•

•

•

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 11

Note that, during the update window, connections are vulnerable to downgrade attacks for

Acceptable Versions that are not Fully Deployed. This is because a client cannot distinguish such

a downgrade attack from legitimate exchanges with both updated and non-updated server

instances.

6. Application-Layer Protocol Considerations

When a client creates a QUIC connection, its goal is to use an application-layer protocol.

Therefore, when considering which versions are compatible, clients will only consider versions

that support one of the intended application-layer protocols. If the client's first flight advertises

multiple Application-Layer Protocol Negotiation (ALPN) tokens and multiple compatible

versions, it is possible for some application-layer protocols to not be able to run over some of the

offered compatible versions. It is the server's responsibility to only select an ALPN token that can

run over the compatible QUIC version that it selects.

A given ALPN token be used with a new QUIC version that is different from the

version for which the ALPN token was originally defined, unless all the following requirements

are met:

The new QUIC version supports the transport features required by the application protocol.

The new QUIC version supports ALPN.

The version of QUIC for which the ALPN token was originally defined is compatible with the

new QUIC version.

When incompatible version negotiation is in use, the second connection that is created in

response to the received Version Negotiation packet restart its application-layer protocol

negotiation process without taking into account the Original Version.

[ALPN]

MUST NOT

•

•

•

MUST

7. Considerations for Future Versions

In order to facilitate the deployment of future versions of QUIC, designers of future versions

 attempt to design their new version such that commonly deployed versions are

compatible with it.

QUIC version 1 defines multiple features which are not documented in the QUIC invariants.

Since, at the time of writing, QUIC version 1 is widely deployed, this section discusses

considerations for future versions to help with compatibility with QUIC version 1.

SHOULD

7.1. Interaction with Retry

QUIC version 1 features Retry packets, which the server can send to validate the client's IP

address before parsing the client's first flight. A server that sends a Retry packet can do so before

parsing the client's first flight. Therefore, a server that sends a Retry packet might not have

processed the client's Version Information before doing so.

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 12

If a future document wishes to define compatibility between two versions that support Retry,

that document specify how version negotiation (both compatible and incompatible)

interacts with Retry during a handshake that requires both. For example, that could be

accomplished by having the server first send a Retry packet in the Original Version, thereby

validating the client's IP address before attempting compatible version negotiation. If both

versions support authenticating Retry packets, the compatibility definition needs to define how

to authenticate the Retry in the Negotiated Version handshake even though the Retry itself was

sent using the client's Chosen Version.

MUST

7.2. Interaction with TLS Resumption

QUIC version 1 uses TLS 1.3, which supports session resumption by sending session tickets in one

connection that can be used in a later connection (see). New versions that

also use TLS 1.3 mandate that their session tickets are tightly scoped to one version of

QUIC, i.e., require that clients not use them across multiple version and that servers validate this

client requirement. This helps mitigate cross-protocol attacks.

Section 2.2 of [TLS]

SHOULD

7.3. Interaction with 0-RTT

QUIC version 1 allows sending data from the client to the server during the handshake by using

0-RTT packets. If a future document wishes to define compatibility between two versions that

support 0-RTT, that document address the scenario where there are 0-RTT packets in the

client's first flight. For example, this could be accomplished by defining which transformations

are applied to 0-RTT packets. That document could specify that compatible version negotiation

causes 0-RTT data to be rejected by the server.

MUST

8. Special Handling for QUIC Version 1

Because QUIC version 1 was the only QUIC version that was published on the IETF Standards

Track before this document, it is handled specially as follows: if a client is starting a QUIC version

1 connection in response to a received Version Negotiation packet and the version_information

transport parameter is missing from the server's transport parameters, then the client

proceed as if the server's transport parameters contained a version_information transport

parameter with a Chosen Version set to 0x00000001 and an Available Version list containing

exactly one version set to 0x00000001. This allows version negotiation to work with servers that

only support QUIC version 1. Note that implementations that wish to use version negotiation to

negotiate versions other than QUIC version 1 implement the version negotiation

mechanism defined in this document.

SHALL

MUST

9. Security Considerations

The security of this version negotiation mechanism relies on the authenticity of the Version

Information exchanged during the handshake. In QUIC version 1, transport parameters are

authenticated, ensuring the security of this mechanism. Negotiation between compatible

versions will have the security of the weakest common version.

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8446#section-2.2

[ALPN]

[QUIC]

[QUIC-INVARIANTS]

[RFC2119]

11. References

11.1. Normative References

, , , and ,

, ,

, July 2014, .

 and ,

, , , May 2021,

.

, , ,

, May 2021, .

, , ,

, , March 1997,

.

The requirement that versions not be assumed compatible mitigates the possibility of cross-

protocol attacks, but more analysis is still needed here. That analysis is out of scope for this

document.

10. IANA Considerations

Value:

Parameter Name:

Status:

Specification:

10.1. QUIC Transport Parameter

IANA has registered the following value in the "QUIC Transport Parameters" registry maintained

at .

0x11

version_information

permanent

RFC 9368

<https://www.iana.org/assignments/quic>

Value:

Code:

Description:

Status:

Specification:

10.2. QUIC Transport Error Code

IANA has registered the following value in the "QUIC Transport Error Codes" registry maintained

at .

0x11

VERSION_NEGOTIATION_ERROR

Error negotiating version

permanent

RFC 9368

<https://www.iana.org/assignments/quic>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)

Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/

RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Thomson, M. "Version-Independent Properties of QUIC" RFC 8999 DOI

10.17487/RFC8999 <https://www.rfc-editor.org/info/rfc8999>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 14

https://www.iana.org/assignments/quic
https://www.iana.org/assignments/quic
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[TLS]

[TCP]

, ,

, , , May 2017,

.

, , ,

, August 2018, .

11.2. Informative References

, , , ,

, August 2022, .

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI

10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Acknowledgments

The authors would like to thank , , , ,

, , and for their input and contributions.

Nick Banks Mike Bishop Martin Duke Ryan Hamilton Roberto

Peon Anthony Rossi Martin Thomson

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

, Mountain View CA 94043

United States of America

 dschinazi.ietf@gmail.com Email:

Eric Rescorla

Mozilla

 ekr@rtfm.com Email:

RFC 9368 QUIC-Compatible VN May 2023

Schinazi & Rescorla Standards Track Page 15

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9293
mailto:dschinazi.ietf@gmail.com
mailto:ekr@rtfm.com

	RFC 9368
	Compatible Version Negotiation for QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions
	1.2. Definitions

	2. Version Negotiation Mechanism
	2.1. Incompatible Version Negotiation
	2.2. Compatible Versions
	2.3. Compatible Version Negotiation
	2.4. Connections and Version Negotiation
	2.5. Client Choice of Original Version

	3. Version Information
	4. Version Downgrade Prevention
	5. Server Deployments of QUIC
	6. Application-Layer Protocol Considerations
	7. Considerations for Future Versions
	7.1. Interaction with Retry
	7.2. Interaction with TLS Resumption
	7.3. Interaction with 0-RTT

	8. Special Handling for QUIC Version 1
	9. Security Considerations
	10. IANA Considerations
	10.1. QUIC Transport Parameter
	10.2. QUIC Transport Error Code

	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgments
	Authors' Addresses

 Compatible Version Negotiation for QUIC

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 dschinazi.ietf@gmail.com

 Mozilla

 ekr@rtfm.com

 Transport
 QUIC
 quic
 version
 negotiation
 compatible
 incompatible
 not quite tls
 tls-ng

 QUIC does not provide a complete version negotiation mechanism but instead only
provides a way for the server to indicate that the version the client chose is
unacceptable. This document describes a version negotiation mechanism that
allows a client and server to select a mutually supported version. Optionally,
if the client's chosen version and the negotiated version share a compatible
first flight format, the negotiation can take place without incurring an extra
round trip. This document updates RFC 8999.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions

 . Definitions

 . Version Negotiation Mechanism

 . Incompatible Version Negotiation

 . Compatible Versions

 . Compatible Version Negotiation

 . Connections and Version Negotiation

 . Client Choice of Original Version

 . Version Information

 . Version Downgrade Prevention

 . Server Deployments of QUIC

 . Application-Layer Protocol Considerations

 . Considerations for Future Versions

 . Interaction with Retry

 . Interaction with TLS Resumption

 . Interaction with 0-RTT

 . Special Handling for QUIC Version 1

 . Security Considerations

 . IANA Considerations

 . QUIC Transport Parameter

 . QUIC Transport Error Code

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction
 The version-invariant properties of QUIC define a
Version Negotiation packet but do not specify how an endpoint reacts when it
receives one. QUIC version 1 allows the server to use a
Version Negotiation packet to indicate that the version the client chose is
unacceptable, but it doesn't allow the client to safely make use of that
information to create a new connection with a mutually supported version.
This document updates by defining version
negotiation mechanisms that leverage the Version Negotiation packet.
 With proper safety mechanisms in place, the Version Negotiation packet can be
part of a mechanism to allow two QUIC implementations to negotiate between two
totally disjoint versions of QUIC. This document specifies version negotiation
using Version Negotiation packets, which adds an extra round trip to connection
establishment if needed.
 It is beneficial to avoid additional round trips whenever possible, especially
given that most incremental versions are broadly similar to the previous
version. This specification also defines a simple version negotiation mechanism which leverages similarities between versions and can negotiate between
"compatible" versions without additional round trips.

 Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Definitions
 The document uses the following terms:

 In the context of a given QUIC connection, the "first flight" of packets
refers to the set of packets the client creates and sends to initiate the
connection before it has heard back from the server.
 In the context of a given QUIC connection, the "client's Chosen Version" is
the QUIC version of the connection's first flight.
 The "Original Version" is the QUIC version of the very first packet the client
sends to the server. If version negotiation spans multiple connections (see
), the Original Version is equal to the client's Chosen Version
of the first QUIC connection.
 The "Negotiated Version" is the QUIC version in use on the connection once the
version negotiation process completes.
 The "Maximum Segment Lifetime" (MSL) represents the time a QUIC packet can
exist in the network. Implementations can make this configurable, and a
 RECOMMENDED value is one minute. Note that the term "segment" here originated
in .

 Version Negotiation Mechanism
 This document specifies two means of performing version negotiation:
1) "incompatible", which requires a round trip and is applicable to all versions,
and 2) "compatible", which allows saving the round trip but only applies when the
versions are compatible (see).
 The client initiates a QUIC connection by choosing an Original Version and
sending a first flight of QUIC packets with a long header to the server
 . The client's first flight includes Version Information (see
), which will be used to optionally enable compatible version
negotiation (see) and to prevent version downgrade attacks (see
).
 Upon receiving this first flight, the server verifies whether it knows how to
parse first flights from the Chosen Version (which is also the Original Version in this case). If it does not, then it starts
incompatible version negotiation (see), which causes the client
to initiate a new connection with a different version. For instance, if the
client initiates a
connection with version A that the server can't parse, the server
starts incompatible version negotiation; then, when the client
initiates a new connection with version B, we say that the first
connection's client Chosen Version is A, the second connection's
client Chosen Version is B, and the Original Version for the entire
sequence is A.
 If the server can parse the first flight, it can establish the connection
using the client's Chosen Version, or it MAY select any other compatible
version, as described in .
 Note that it is possible for a server to have the ability to parse the first
flight of a given version without fully supporting it, in the sense that it
implements enough of the version's specification to parse first flight packets
but not enough to fully establish a connection using that version.

 Incompatible Version Negotiation
 The server starts incompatible version negotiation by sending a Version
Negotiation packet. This packet SHALL include each entry from the server's set
of Offered Versions (see) in a Supported Version field. The
server MAY add reserved versions (as defined in) in
Supported Version fields.
 Clients will ignore a Version Negotiation packet if it contains the Original
Version attempted by the client, as required by . The client also ignores a
Version Negotiation packet that contains incorrect connection ID fields, as required by
 .
 Upon receiving the Version Negotiation packet, the client SHALL search for a
version it supports in the list provided by the server. If it doesn't find one,
it SHALL abort the connection attempt. Otherwise, it SHALL select a mutually
supported version and send a new first flight with that version -- this version
is now the Negotiated Version.
 The new first flight will allow the endpoints to establish a connection using
the Negotiated Version. The handshake of the Negotiated Version will exchange
Version Information (see) that is required to ensure that version
negotiation was genuine, i.e., that no attacker injected packets in order to
influence the version negotiation process (see).
 Only servers can start incompatible version negotiation. Clients MUST NOT send
Version Negotiation packets and servers MUST ignore all received Version
Negotiation packets.

 Compatible Versions
 If A and B are two distinct versions of QUIC, A is said to be "compatible" with
B if it is possible to take a first flight of packets from version A and convert
it into a first flight of packets from version B. As an example, if versions A
and B are absolutely equal in their wire image and behavior during the handshake
but differ after the handshake, then A is compatible with B and B is compatible
with A. Note that the conversion of the first flight can be lossy; some data,
such as QUIC version 1 0-RTT packets, could be ignored during conversion and
retransmitted later.
 Version compatibility is not symmetric. It is possible for version A to be
compatible with version B and for version B not to be compatible with version A. This could
happen, for example, if version B is a strict superset of version A, i.e., if version A
includes the concept of streams and STREAM frames and version B includes the
concept of streams and the hypothetical concept of tubes along with STREAM and
TUBE frames, then A would be compatible with B, but B would not be compatible
with A.
 Note that version compatibility does not mean that every single possible
instance of a first flight will succeed in conversion to the other version. A
first flight using version A is said to be "compatible" with version B if two
conditions are met: (1) version A is compatible with version B and
(2) the conversion of this first flight to version B is well defined.
For example, if version B is equal to version A in all aspects except it introduced a
new frame in its first flight that version A cannot parse or even ignore, then version B
could still be compatible with version A, as conversions would succeed for connections
where that frame is not used. In this example, first flights using version B
that carry this new frame would not be compatible with version A.
 When a new version of QUIC is defined, it is assumed to not be compatible with
any other version unless otherwise specified. Similarly, no other version is
compatible with the new version unless otherwise specified. Implementations MUST NOT assume compatibility between versions unless explicitly specified.
 Note that both endpoints might disagree on whether two versions are compatible
or not. For example, two versions could have been defined concurrently and then
specified as compatible in a third document much later -- in that scenario, one
endpoint might be aware of the compatibility document, while the other may not.

 Compatible Version Negotiation
 When the server can parse the client's first flight using the client's Chosen
Version, it can extract the client's Version Information structure (see
). This contains the list of versions that the client knows its
first flight is compatible with.
 In order to perform compatible version negotiation, the server MUST select one
of these versions that it (1) supports and (2) knows the client's Chosen
Version is compatible with. This selected version is now the Negotiated
Version. After selecting it, the server attempts to convert the client's first
flight into that version and replies to the client as if it had received the
converted first flight.
 If those formats are identical, as in cases where the Negotiated Version is the
same as the client's Chosen Version, then this will be the identity transformation.
If the first flight is correctly formatted, then this conversion process cannot
fail by definition of the first flight being compatible; if the server is unable
to convert the first flight, it MUST abort the handshake.
 If a document specifies that a QUIC version is compatible with another, that
document MUST specify the mechanism by which clients are made aware of the
Negotiated Version. An example of such a mechanism is to have the client
determine the server's Negotiated Version by examining the QUIC long header
Version field. Note that, in this example mechanism, it is possible for the
server to initially send packets with the client's Chosen Version before
switching to the Negotiated Version (this can happen when the client's Version
Information structure spans multiple packets; in that case, the server might
acknowledge the first packet in the client's Chosen Version and later switch to
a different Negotiated Version). Mutually compatible versions SHOULD use the
same mechanism.
 Note that, after the first flight is converted to the Negotiated Version, the
handshake completes in the Negotiated Version. If the Negotiated Version has
requirements that apply during the handshake, those requirements apply to the
entire handshake, including the converted first flight. In particular, if the
Negotiated Version mandates that endpoints perform validations on Handshake
packets, endpoints MUST also perform such validations on the converted first
flight. For instance, if the Negotiated Version requires that the 5-tuple remain stable for the entire handshake (as QUIC version 1 does), then both endpoints need to validate the 5-tuple of all packets received during the handshake, including the converted first flight.
 Note also that the client can disable compatible version negotiation by only
including the Chosen Version in the Available Versions field of the Version
Information (see).
 If the server does not find a compatible version (including the client's Chosen
Version), it will perform incompatible version negotiation instead (see
).
 Note that it is possible to have incompatible version negotiation followed by
compatible version negotiation. For instance, if version A is compatible with version B
and version C is compatible with version D, the following scenario could occur:

 Combined Negotiation Example

Client Server

Chosen = A, Available Versions = (A, B) ------------->
<------------------------ Version Negotiation = (D, C)

Chosen = C, Available Versions = (C, D) ------------->
<------------- Chosen = D, Available Versions = (D, C)

 In this example, the client selected C from the server's Version Negotiation
packet, but the server preferred D and then selected it from the client's offer.

 Connections and Version Negotiation
 QUIC connections are shared state between a client and a server
 . The compatible version negotiation mechanism defined in
this document (see) is performed as part of a single QUIC
connection; that is, the packets with the client's Chosen Version are part of
the same connection as the packets with the Negotiated Version.
 In comparison, the incompatible version negotiation mechanism, which leverages
QUIC Version Negotiation packets (see), conceptually operates
across two QUIC connections, i.e., the connection attempt prior to receiving the
Version Negotiation packet is distinct from the connection with the incompatible
version that follows.
 Note that this separation across two connections is conceptual, i.e., it applies to
normative requirements on QUIC connections, but it does not require implementations
to internally use two distinct connection objects.

 Client Choice of Original Version
 When the client picks its Original Version, it SHOULD try to avoid incompatible
version negotiation to save a round trip. Therefore, the client SHOULD pick an
Original Version to maximize the combined probability that both:

 the server knows how to parse first flights from the Original Version and
 the Original Version is compatible with the client's preferred version.

 Without additional information, this could mean selecting the oldest version
that the client supports while advertising newer compatible versions in the
client's first flight.

 Version Information
 During the handshake, endpoints will exchange Version Information, which
consists of a Chosen Version and a list of Available Versions. Any version of
QUIC that supports this mechanism MUST provide a mechanism to exchange Version
Information in both directions during the handshake, such that this data is
 authenticated.
 In QUIC version 1, the Version Information is transmitted using a new
version_information transport parameter (see). The
contents of Version Information are shown below (using the notation from):

 Version Information Format

Version Information {
 Chosen Version (32),
 Available Versions (32) ...,
}

 The content of each field is described below:

 Chosen Version:

 The version that the sender has chosen to use for this connection. In most
cases, this field will be equal to the value of the Version field in the long
header that carries this data; however, future versions or extensions can choose
to set different values in the long header Version field.

 The contents of the Available Versions field depend on whether it is sent by
the client or by the server.

 Client-Sent Available Versions:

 When sent by a client, the Available Versions field lists all the versions
that this first flight is compatible with, ordered by descending preference.
Note that the version in the Chosen Version field MUST be included in this list
to allow the client to communicate the Chosen Version's preference. Note that
this preference is only advisory; servers MAY choose to use their own preference
instead.

 Server-Sent Available Versions:

 When sent by a server, the Available Versions field lists all the
Fully Deployed Versions of this server deployment (see). The
ordering of the versions in this field does not carry any semantics. Note
that the version in the Chosen Version field is not necessarily included in this
list, because the server operator could be in the process of removing support
for this version. For the same reason, the Available Versions field MAY be empty.

 Clients and servers MAY both include versions following the pattern 0x?a?a?a?a
in their Available Versions list. Those versions are reserved to exercise
version negotiation (see) and will never be
selected when choosing a version to use.

 Version Downgrade Prevention
 A version downgrade is an attack where a malicious entity manages to make the
QUIC endpoints negotiate a QUIC version different from the one they would have
negotiated in the absence of the attack. The mechanism described in this
document is designed to prevent downgrade attacks.
 Clients MUST ignore any received Version Negotiation packets that contain the
Original Version. A client that makes a connection attempt based on information
received from a Version Negotiation packet MUST ignore any Version Negotiation
packets it receives in response to that connection attempt.
 Both endpoints MUST parse their peer's Version Information during the handshake.
If that leads to a parsing failure (for example, if it is too short or if
its length is not divisible by four), then the endpoint MUST close the
connection; if the connection was using QUIC version 1, that connection closure
 MUST use a transport error of type TRANSPORT_PARAMETER_ERROR. If an endpoint
receives a Chosen Version equal to zero, or any Available Version equal to zero,
it MUST treat it as a parsing failure. If a server receives Version
Information where the Chosen Version is not included in Available Versions, it
 MUST treat it as a parsing failure.
 Every QUIC version that supports version negotiation MUST define a method for
 closing the connection with a version negotiation error.

 For QUIC version 1,
version negotiation errors are signaled using a transport error of type
VERSION_NEGOTIATION_ERROR (see).
 When a server receives a client's first flight, the server will first establish
which QUIC version is in use for this connection in order to properly parse the
first flight. This may involve examining data that is not part of the handshake transcript, such as parts of the packet header. When the server then processes the client's Version
Information, the server MUST validate that the client's Chosen Version matches
the version in use for the connection. If the two differ, the server MUST close
the connection with a version negotiation error.
 In the specific case of QUIC version 1, the server determines that version 1 is in use by observing that the Version field of the first Long Header packet it receives is set to 0x00000001. Subsequently, if the server
receives the client's Version Information over QUIC version 1 (as indicated by
the Version field of the Long Header packets that carried the transport
parameters) and the client's Chosen Version is not set to 0x00000001, the server
 MUST close the connection with a version negotiation error.
 Servers MAY complete the handshake even if the Version Information is missing. Clients MUST NOT complete the handshake if they are reacting to a Version Negotiation packet and the Version Information is missing, but MAY do so otherwise.
 If a client receives Version Information where the server's Chosen Version was
not sent by the client as part of its Available Versions, the client MUST close
the connection with a version negotiation error. If a client has reacted to a Version Negotiation packet and the server's Version Information was missing, the client MUST close the connection with a version negotiation error.
 If the client received and acted on a Version Negotiation packet, the client
 MUST validate the server's Available Versions field. The Available Versions
field is validated by confirming that the client would have attempted the same
version with knowledge of the versions the server supports. That is, the client
would have selected the same version if it received a Version Negotiation packet
that listed the versions in the server's Available Versions field, plus the
Negotiated Version. If the client would have selected a different version, the
client MUST close the connection with a version negotiation error. In
particular, if the client reacted to a Version Negotiation packet and the
server's Available Versions field is empty, the client MUST close the connection
with a version negotiation error. These connection closures prevent an attacker
from being able to use forged Version Negotiation packets to force a version
downgrade.
 As an example, let's assume a client supports hypothetical QUIC versions 10, 12,
and 14 with a preference for higher versions. The client initiates a connection
attempt with version 12. Let's explore two independent example scenarios:

 In the first scenario, the server supports versions 10, 13, and 14, but only 13
and 14 are Fully Deployed (see). The server sends a Version
Negotiation packet with versions 10, 13, and 14. This triggers an incompatible
version negotiation, and the client initiates a new connection with version 14.
Then, the server's Available Versions field contains 13 and 14. In that
scenario, the client would have also picked 14 if it had received a Version
Negotiation packet with versions 13 and 14; therefore, the handshake succeeds
using Negotiated Version 14.
 In the second scenario, the server supports versions 10, 13, and 14, and they
are all Fully Deployed. However, the attacker forges a Version Negotiation
packet with versions 10 and 13. This triggers an incompatible version
negotiation, and the client initiates a new connection with version 10. Then,
the server's Available Versions field contains 10, 13, and 14. In that
scenario, the client would have picked 14 instead of 10 if it had received a
Version Negotiation packet with versions 10, 13, and 14; therefore, the client
aborts the handshake with a version negotiation error.

 This validation of Available Versions is not sufficient to prevent downgrade.
Downgrade prevention also depends on the client ignoring Version Negotiation
packets that contain the Original Version (see).
 After the process of version negotiation described in this document completes, the version
in use for the connection is the version that the server sent in the Chosen
Version field of its Version Information. That remains true even if other
versions were used in the Version field of long headers at any point in the
lifetime of the connection. In particular, since the client can be made aware of the Negotiated Version by the QUIC long
header version during compatible version negotiation (see), clients MUST validate that the server's
Chosen Version is equal to the Negotiated Version; if they do not match, the
client MUST close the connection with a version negotiation error. This prevents
an attacker's ability to influence version negotiation by forging the long header Version
field.

 Server Deployments of QUIC
 While this document mainly discusses a single QUIC server, it is common for
deployments of QUIC servers to include a fleet of multiple server instances.
Therefore, we define the following terms:

 Acceptable Versions:

 This is the set of versions supported by a given server instance. More
specifically, these are the versions that a given server instance will use if a
client sends a first flight using them.

 Offered Versions:

 This is the set of versions that a given server instance will send in a
Version Negotiation packet if it receives a first flight from an unknown
version. This set will most often be equal to the Acceptable Versions set,
except during short transitions while versions are added or removed (see below).

 Fully Deployed Versions:

 This is the set of QUIC versions that is supported and negotiated by every
single QUIC server instance in this deployment. If a deployment only contains a
single server instance, then this set is equal to the Offered Versions set,
except during short transitions while versions are added or removed (see below).

 If a deployment contains multiple server instances, software updates may not
happen at exactly the same time on all server instances. Because of this, a
client might receive a Version Negotiation packet from a server instance that
has already been updated, and the client's resulting connection attempt might
reach a different server instance which hasn't been updated yet.
 However, even when there is only a single server instance, it is still possible
to receive a stale Version Negotiation packet if the server performs its
software update while the Version Negotiation packet is in flight.
 This could cause the version downgrade prevention mechanism described in
 to falsely detect a downgrade attack. To avoid that, server
operators SHOULD perform a three-step process when they wish to add or remove
support for a version, as described below.
 When adding support for a new version:

 The first step is to progressively add support for the new version to all
server instances. This step updates the Acceptable Versions but not the
Offered Versions nor the Fully Deployed Versions. Once all server instances
have been updated, operators wait for at least one MSL to allow any in-flight
Version Negotiation packets to arrive.
 Then, the second step is to progressively add the new version to Offered
Versions on all server instances. Once complete, operators wait for at least
another MSL.
 Finally, the third step is to progressively add the new version to
Fully Deployed Versions on all server instances.

 When removing support for a version:

 The first step is to progressively remove the version from Fully Deployed
Versions on all server instances. Once it has been removed on all server
instances, operators wait for at least one MSL to allow any in-flight Version
Negotiation packets to arrive.
 Then, the second step is to progressively remove the version from Offered
Versions on all server instances. Once complete, operators wait for at least
another MSL.
 Finally, the third step is to progressively remove support for the version
from all server instances. That step updates the Acceptable Versions.

 Note that, during the update window, connections are vulnerable to
 downgrade attacks for Acceptable Versions that are not Fully
 Deployed. This is because a client cannot distinguish such a
 downgrade attack from legitimate exchanges with both updated and
 non-updated server instances.

 Application-Layer Protocol Considerations
 When a client creates a QUIC connection, its goal is to use an application-layer
protocol. Therefore, when considering which versions are compatible, clients
will only consider versions that support one of the intended application-layer
protocols. If the client's first flight advertises multiple Application-Layer
Protocol Negotiation (ALPN) tokens and multiple compatible
versions, it is possible for some application-layer protocols to not be able to
run over some of the offered compatible versions. It is the server's
responsibility to only select an ALPN token that can run over the compatible
QUIC version that it selects.
 A given ALPN token MUST NOT be used with a new QUIC version that is different from the
version for which the ALPN token was originally defined, unless all the
following requirements are met:

 The new QUIC version supports the transport features required by the
application protocol.
 The new QUIC version supports ALPN.
 The version of QUIC for which the ALPN token was originally defined is
compatible with the new QUIC version.

 When incompatible version negotiation is in use, the second connection that is
 created in response to the received Version
 Negotiation packet MUST restart its application-layer protocol
 negotiation process without taking into account the Original Version.

 Considerations for Future Versions
 In order to facilitate the deployment of future versions of QUIC, designers of
future versions SHOULD attempt to design their new version such that commonly
deployed versions are compatible with it.
 QUIC version 1 defines multiple features which are not documented in the QUIC
invariants. Since, at the time of writing, QUIC version 1 is widely deployed,
this section discusses considerations for future versions to help with
compatibility with QUIC version 1.

 Interaction with Retry
 QUIC version 1 features Retry packets, which the server can send to validate the
client's IP address before parsing the client's first flight. A server that
sends a Retry packet can do so before parsing the client's first flight. Therefore, a
server that sends a Retry packet might not have processed the client's
Version Information before doing so.
 If a future document wishes to define compatibility between two versions that
support Retry, that document MUST specify how version negotiation (both
compatible and incompatible) interacts with Retry during a handshake that
requires both. For example, that could be accomplished by having the server
first send a Retry packet in the Original Version, thereby validating the
client's IP address before attempting compatible version negotiation. If both
versions support authenticating Retry packets, the compatibility definition
needs to define how to authenticate the Retry in the Negotiated Version
handshake even though the Retry itself was sent using the client's Chosen
Version.

 Interaction with TLS Resumption
 QUIC version 1 uses TLS 1.3, which supports session resumption by sending
session tickets in one connection that can be used in a later connection (see
). New versions that also use TLS 1.3 SHOULD
mandate that their session tickets are tightly scoped to one version of QUIC,
i.e., require that clients not use them across multiple version and that servers
validate this client requirement. This helps mitigate cross-protocol attacks.

 Interaction with 0-RTT
 QUIC version 1 allows sending data from the client to the server during the
handshake by using 0-RTT packets. If a future document wishes to define
compatibility between two versions that support 0-RTT, that document MUST
address the scenario where there are 0-RTT packets in the client's first flight.
For example, this could be accomplished by defining which transformations are
applied to 0-RTT packets. That document could specify that compatible version
negotiation causes 0-RTT data to be rejected by the server.

 Special Handling for QUIC Version 1
 Because QUIC version 1 was the only QUIC version that was published
 on the IETF Standards Track before this document, it is handled
 specially as follows: if a client is starting a QUIC version 1
 connection in response to a received Version Negotiation packet and
 the version_information transport parameter is missing from the
 server's transport parameters, then the client SHALL proceed as if
 the server's transport parameters contained a version_information
 transport parameter with a Chosen Version set to 0x00000001 and an
 Available Version list containing exactly one version set to
 0x00000001. This allows version negotiation to work with servers
 that only support QUIC version 1. Note that implementations that
 wish to use version negotiation to negotiate versions other than QUIC
 version 1 MUST implement the version negotiation mechanism
 defined in this document.

 Security Considerations
 The security of this version negotiation mechanism relies on the authenticity of
the Version Information exchanged during the handshake. In QUIC version 1,
transport parameters are authenticated, ensuring the security of this mechanism.
Negotiation between compatible versions will have the security of the weakest
common version.
 The requirement that versions not be assumed compatible mitigates the
possibility of cross-protocol attacks, but more analysis is still needed here.
That analysis is out of scope for this document.

 IANA Considerations

 QUIC Transport Parameter
 IANA has registered the following value in the "QUIC Transport Parameters"
registry maintained at .

 Value:
 0x11
 Parameter Name:
 version_information
 Status:
 permanent
 Specification:
 RFC 9368

 QUIC Transport Error Code
 IANA has registered the following value in the "QUIC Transport Error Codes"
	registry maintained at .

 Value:
 0x11
 Code:
 VERSION_NEGOTIATION_ERROR
 Description:
 Error negotiating version
 Status:
 permanent
 Specification:
 RFC 9368

 References

 Normative References

 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

 This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 Version-Independent Properties of QUIC

 This document defines the properties of the QUIC transport protocol that are common to all versions of the protocol.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Informative References

 Transmission Control Protocol (TCP)

 This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth of the Internet. Over this time, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961 by adding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.

 Acknowledgments
 The authors would like to thank , , , , , , and for their input and
contributions.

 Authors' Addresses

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 dschinazi.ietf@gmail.com

 Mozilla

 ekr@rtfm.com

